Summary
p97 is a AAA-ATPase with multiple cellular functions, one of which is critical regulation of protein homeostasis pathways. We describe the characterization of CB-5083, a potent, selective and orally bioavailable inhibitor of p97. Treatment of tumor cells with CB-5083 leads to accumulation of poly-ubiquitinated proteins, retention of endoplasmic reticulum associated degradation (ERAD) substrates and generation of irresolvable proteotoxic stress leading to activation of the apoptotic arm of the unfolded protein response (UPR). In xenograft models, CB-5083 causes modulation of key p97-related pathways, induces apoptosis and has antitumor activity in a broad range of both hematological and solid tumor models. Molecular determinants of CB-5083 activity include expression of genes in the ERAD pathway providing a potential strategy for patient selection.
We performed a genome-wide association study of esophageal squamous cell carcinoma (ESCC) by genotyping 1,077 individuals with ESCC and 1,733 control subjects of Chinese Han descent. We selected 18 promising SNPs for replication in an additional 7,673 cases of ESCC and 11,013 control subjects of Chinese Han descent and 303 cases of ESCC and 537 control subjects of Chinese Uygur-Kazakh descent. We identified two previously unknown susceptibility loci for ESCC: PLCE1 at 10q23 (P(Han combined for ESCC) = 7.46 x 10(-56), odds ratio (OR) = 1.43; P(Uygur-Kazakh for ESCC) = 5.70 x 10(-4), OR = 1.53) and C20orf54 at 20p13 (P(Han combined for ESCC) = 1.21 x 10(-11), OR = 0.86; P(Uygur-Kazakh for ESCC) = 7.88 x 10(-3), OR = 0.66). We also confirmed association in 2,766 cases of gastric cardia adenocarcinoma cases and the same 11,013 control subjects (PLCE1, P(Han for GCA) = 1.74 x 10(-39), OR = 1.55 and C20orf54, P(Han for GCA) = 3.02 x 10(-3), OR = 0.91). PLCE1 and C20orf54 have important biological implications for both ESCC and GCA. PLCE1 might regulate cell growth, differentiation, apoptosis and angiogenesis. C20orf54 is responsible for transporting riboflavin, and deficiency of riboflavin has been documented as a risk factor for ESCC and GCA.
We identified an lncRNA, LINC01503, which is increased in SCC cells compared with non-tumor cells. Increased expression of LINC01503 promotes ESCC cell proliferation, migration, invasion, and growth of xenograft tumors. It might be developed as a biomarker of aggressive SCCs in patients.
Inhibition of the AAA ATPase, p97, was recently shown to be a novel method for targeting the ubiquitin proteasome system, and CB-5083, a first-in-class inhibitor of p97, has demonstrated broad antitumor activity in a range of both hematologic and solid tumor models. Here, we show that CB-5083 has robust activity against multiple myeloma cell lines and a number of multiple myeloma models. Treatment with CB-5083 is associated with accumulation of ubiquitinated proteins, induction of the unfolded protein response, and apoptosis. CB-5083 decreases viability in multiple myeloma cell lines and patient-derived multiple myeloma cells, including those with background proteasome inhibitor (PI) resistance. CB-5083 has a unique mechanism of action that combines well with PIs, which is likely owing to the p97-dependent retro-translocation of the transcription factor, Nrf1, which transcribes proteasome subunit genes following exposure to a PI. studies using clinically relevant multiple myeloma models demonstrate that single-agent CB-5083 inhibits tumor growth and combines well with multiple myeloma standard-of-care agents. Our preclinical data demonstrate the efficacy of CB-5083 in several multiple myeloma disease models and provide the rationale for clinical evaluation as monotherapy and in combination in multiple myeloma. .
RUVBL1
and RUVBL2 are ATPases associated with diverse cellular
activities (AAAs) that form a complex involved in a variety of cellular
processes, including chromatin remodeling and regulation of gene expression.
RUVBLs have a strong link to oncogenesis, where overexpression is
correlated with tumor growth and poor prognosis in several cancer
types. CB-6644, an allosteric small-molecule inhibitor of the ATPase
activity of the RUVBL1/2 complex, interacts specifically with RUVBL1/2
in cancer cells, leading to cell death. Importantly, drug-acquired-resistant
cell clones have amino acid mutations in either RUVBL1 or RUVBL2,
suggesting that cell killing is an on-target consequence of RUVBL1/2
engagement. In xenograft models of acute myeloid leukemia and multiple
myeloma, CB-6644 significantly reduced tumor growth without obvious
toxicity. This work demonstrates the therapeutic potential of targeting
RUVBLs in the treatment of cancer and establishes a chemical entity
for probing the many facets of RUVBL biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.