The red edge band is considered as one of the diagnosable characteristics of green plants, but the large-scale remote sensing retrieval of fractional vegetation coverage (FVC) based on the red edge band is still rare. To explore the application of the red edge band in the remote sensing estimation of FVC, this study proposed a new vegetation index (normalized difference red edge index, RENDVI) based on the two red edge bands of Chinese GaoFen-6 satellite (GF-6). The FVC estimated by using three vegetation indices (NDVI, RENDVI1, and RENDVI2) were evaluated based on the field survey FVC obtained in Minqin Basin of Gansu Province. The results showed that there was a good linear correlation between the FVC estimated by GF-6 WFV data and the FVC investigated in the field, and the most reasonable estimation of FVC was obtained based on RENDVI2 model (R
2 = 0.97611 and RMSE = 0.07075). Meanwhile, the impact of three confidence levels (1, 2, and 5%) on FVC was also analyzed in this study. FVC obtained from NDVI and RENDVI2 has the highest accuracy at 2% confidence, while FVC based on RENDVI1 achieved the best accuracy at 5% confidence. It could be concluded that it is feasible and reliable to estimate FVC based on red edge bands, and the GF-6 Wide Field View (WFV) data with high temporal and spatial resolution provide a new data source for remote sensing estimation of FVC.
Engineering structures usually exhibit time-varying behavior when subjected to strong excitation or due to material deterioration. This behavior is one of the key properties affecting the structural performance. Hence, reasonable description and timely tracking of time-varying characteristics of engineering structures are necessary for their safety assessment and life-cycle management. Due to its powerful ability of approximating functions in the time-frequency domain, wavelet multi-resolution approximation has been widely applied in the field of parameter estimation. Considering that the damage levels of beams and columns are usually different, identification of time-varying structural parameters of frame structure under seismic excitation using wavelet multi-resolution approximation is studied in this article. A time-varying dynamical model including both the translational and rotational degrees of freedom is established so as to estimate the stiffness coefficients of beams and columns separately. By decomposing each time-varying structural parameter using one wavelet multi-resolution approximation, the time-varying parametric identification problem is transformed into a timeinvariant non-parametric one. In solving the high number of regressors in the non-parametric regression program, the modified orthogonal forward regression algorithm is proposed for significant term selection and parameter estimation. This work is demonstrated through numerical examples which consider both gradual variation and abrupt changes in the structural parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.