The Large sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) general survey is a spectroscopic survey that will eventually cover approximately half of the celestial sphere and collect 10 million spectra of stars, galaxies and QSOs. Objects in both the pilot survey and the first year regular survey are included in the LAMOST DR1. The pilot survey started in October 2011 and ended in June 2012, and the data have been released to the public as the LAMOST Pilot Data Release in August 2012. The regular survey started in September 2012, and completed its first year of operation in June 2013. The LAMOST DR1 includes a total of 1202 plates containing 2 955 336 spectra, of which 1 790 879 spectra have observed signalto-noise ratio (SNR) ≥ 10. All data with SNR ≥ 2 are formally released as LAMOST DR1 under the LAMOST data policy. This data release contains a total of 2 204 696 spectra, of which 1 944 329 are stellar spectra, 12 082 are galaxy spectra and 5017 are quasars. The DR1 not only includes spectra, but also three stellar catalogs with measured parameters: late A,FGK-type stars with high quality spectra (1 061 918 entries), A-type stars (100 073 entries), and M-type stars (121 522 entries). This paper introduces the survey design, the observational and instrumental limitations, data reduction and analysis, and some caveats. A description of the FITS structure of spectral files and parameter catalogs is also provided.
Context. The Red MSX Source (RMS) survey is an ongoing multi-wavelength observational programme designed to return a large, well-selected sample of massive young stellar objects (MYSOs). We have identified ∼2000 MYSOs candidates located within our Galaxy by comparing the colours of MSX and 2MASS point sources to those of known MYSOs. The aim of our follow-up observations is to identify other contaminating objects such as ultra compact (UC) HII regions, evolved stars and planetary nebulae (PNe) and distinguish between genuine MYSOs and nearby low-mass YSOs. Aims. A critical part of our follow-up programme is to conduct 13 CO molecular line observations in order to determine kinematic distances to all of our MYSO candidates. These distances will be used in combination with far-IR and (sub)millimetre fluxes to determine bolometric luminosities which will allow us to identify and remove nearby low-mass YSOs. In addition these molecular line observations will help in identifying evolved stars which are weak CO emitters. Methods. We have used the 22 m Mopra telescope, the 15 m JCMT and the 20 m Onsala telescope to conduct molecular line observations towards 854 MYSOs candidates located in the 3rd and 4th quadrants. These observations have been made at the J = 1-0 (Mopra and Onsala) and J = 2-1 (JCMT) rotational transition frequency of 13 CO molecules and have a spatial resolution of ∼20 −40 , a sensitivity of T * A 0.1 K and a velocity resolution of ∼0.2 km s −1 . Results. We detect 13 CO emission towards a total of 752 of the 854 RMS sources observed (∼88%). In total 2132 emission components are detected above 3σ level (typically T * A ≥ 0.3 K). Multiple emission profiles are observed towards the majority of these sources -461 sources (∼60%) -with an average of ∼4 molecular clouds detected along the line of sight. These multiple emission features make it difficult to assign a kinematic velocity to many of our sample. We have used archival CS (J = 2-1) and maser velocities to resolve the component multiplicity towards 82 sources and have derived a criterion which is used to identify the most likely component for a further 218 multiple component sources. Combined with the single component detections we have obtained unambiguous kinematic velocities towards 591 sources (∼80% of the detections). The 161 sources for which we have not been able to determine the kinematic velocity will require additional line data. Using the rotation curve of Brand & Blitz (1993) and their radial velocities we calculate kinematic distances for all components detected.
The Milky Way Imaging Scroll Painting (MWISP) project is an unbiased Galactic plane CO survey for mapping regions of l = −10 • to +250 • and |b| < ∼ 5. • 2 with the 13.7 m telescope of the Purple Mountain Observatory. The legacy survey aims to observe the 12 CO, 13 CO, and C 18 O (J=1-0) lines simultaneously with full-sampling using the nine-beam Superconducting SpectroScopic Array Receiver (SSAR) system with an instantaneous bandwidth of 1 GHz. In this paper, the completed 250 deg 2 data from l = +25. • 8 to +49. • 7 are presented with a grid spacing of 30 ′′ and a typical rms noise level of ∼ 0.5 K for 12 CO at the channel width of 0.16 km s −1 and ∼ 0.3 K for 13 CO and C 18 O at 0.17 km s −1 . The high-quality data with moderate resolution (∼50 ′′ ), uniform sensitivity, and high spatial dynamic range, allow us to investigate the details of molecular clouds (MCs) traced by the three CO isotope lines. Three interesting examples are briefly investigated, including distant Galactic spiral arms traced by CO emission with V LSR <0 km s −1 , the bubble-like dense gas structure near the H ii region W40, and the MCs distribution perpendicular to the Galactic plane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.