Here we analyse genetic variation, population structure and diversity among 3,010 diverse Asian cultivated rice (Oryza sativa L.) genomes from the 3,000 Rice Genomes Project. Our results are consistent with the five major groups previously recognized, but also suggest several unreported subpopulations that correlate with geographic location. We identified 29 million single nucleotide polymorphisms, 2.4 million small indels and over 90,000 structural variations that contribute to within-and between-population variation. Using pan-genome analyses, we identified more than 10,000 novel full-length protein-coding genes and a high number of presence-absence variations. The complex patterns of introgression observed in domestication genes are consistent with multiple independent rice domestication events. The public availability of data from the 3,000 Rice Genomes Project provides a resource for rice genomics research and breeding.Asian cultivated rice is grown worldwide and comprises the staple food for half of the global population. It is envisaged that by the year 2035 1 feeding this growing population will necessitate that an additional 112 million metric tons of rice be produced on a smaller area of land, using less water and under more fluctuating climatic conditions, which will require that future rice cultivars be higher yielding and resilient to multiple abiotic and biotic stresses. The foundation of the continued improvement of rice cultivars is the rich genetic diversity within domesticated populations and wild relatives [2][3][4] . For over 2,000 years, two major types of O. sativa-O. sativa Xian group (here referred to as Xian/Indica (XI) and also known as , Hsien or Indica) and O. sativa Geng Group (here referred to as Geng/Japonica (GJ) and also known as , Keng or Japonica)-have historically been recognized [5][6][7] . Varied degrees of post-reproductive barriers exist between XI and GJ rice accessions 8 ; this differentiation between XI and GJ rice types and the presence of different varietal groups are well-documented at isozyme and DNA levels 6,9 . Two other distinct groups have also been recognized using molecular markers 10 ; one of these encompasses the Aus, Boro and Rayada ecotypes from Bangladesh and India (which we term the circum-Aus group (cA)) and the other comprises the famous Basmati and Sadri aromatic varieties (which we term the circum-Basmati group (cB)).Approximately 780,000 rice accessions are available in gene banks worldwide 11 . To enable the more efficient use of these accessions in future rice improvement, the Chinese Academy of Agricultural Sciences, BGI-Shenzhen and International Rice Research Institute sequenced over 3,000 rice genomes (3K-RG) as part of the 3,000 Rice Genomes Project 12. Here we present analyses of genetic variation in the 3K-RG that focus on important aspects of O. sativa diversity, single nucleotide polymorphisms (SNPs) and structural variation (deletions, duplications, inversions and translocations). We also construct a species pangenome consisting of 'core...
Domesticated buffaloes have been integral to rice-paddy agro-ecosystems for millennia, yet relatively little is known about the buffalo genomics. Here, we sequenced and assembled reference genomes for both swamp and river buffaloes and we re-sequenced 230 individuals (132 swamp buffaloes and 98 river buffaloes) sampled from across Asia and Europe. Beyond the many actionable insights that our study revealed about the domestication, basic physiology and breeding of buffalo, we made the striking discovery that the divergent domestication traits between swamp and river buffaloes can be explained with recent selections of genes on social behavior, digestion metabolism, strengths and milk production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.