State-of-the-art semantic segmentation methods require sufficient labeled data to achieve good results and hardly work on unseen classes without fine-tuning. Few-shot segmentation is thus proposed to tackle this problem by learning a model that quickly adapts to new classes with a few labeled support samples. Theses frameworks still face the challenge of generalization ability reduction on unseen classes due to inappropriate use of high-level semantic information of training classes and spatial inconsistency between query and support targets. To alleviate these issues, we propose the Prior Guided Feature Enrichment Network (PFENet). It consists of novel designs of (1) a training-free prior mask generation method that not only retains generalization power but also improves model performance and (2) Feature Enrichment Module (FEM) that overcomes spatial inconsistency by adaptively enriching query features with support features and prior masks. Extensive experiments on PASCAL-5 i and COCO prove that the proposed prior generation method and FEM both improve the baseline method significantly. Our PFENet also outperforms state-of-the-art methods by a large margin without efficiency loss. It is surprising that our model even generalizes to cases without labeled support samples. Our code is available at https://github.com/Jia-Research-Lab/PFENet/.
NADPH oxidase 4 (NOX4) is deregulated in various cancers and involved in cancer proliferation and metastasis. However, what the role of NOX4 plays during malignant progression of non-small cell lung cancer (NSCLC) remains unknown. Our results show that NOX4 was upregulated in NSCLC cell lines and samples from patients, compared with controls; NOX4 protein levels were closely correlated with clinical disease stage and survival time. Overexpression of NOX4 in A549 and H460 NSCLC cells enhanced cell proliferation and invasion in vitro, and produced larger tumors, shorter survival time, and more lung metastasis in nude mice than control cells. On the contrary, NOX4 depletion inhibited NSCLC cell aggressiveness. Inhibition of PI3K/Akt pathway could sufficiently block the cellular effects of NOX4 overexpression in NSCLC cells both in vitro and in vivo. Specifically, we demonstrated that PI3K/Akt pathway also positively regulated NOX4 expression via NF-κB-mediated manner. Therefore, there existed a mutual positive regulation between NOX4 and PI3K/Akt signaling in NSCLC cells, and NOX4 was confirmed to functionally interplay with PI3K/Akt signaling to promote NSCLC cell proliferation and invasion. In conclusion, the positive feedback loop between NOX4 and PI3K/Akt signaling contributes to NSCLC progression.
Conventional chemotherapy fails to cure metastatic hepatoma mainly due to its high hepatotoxicity. Many plant-derived agents have been accepted to effectively inhibit hepatoma cell invasion. However, the investigation that whether effectual plant-derived agents against invasive hepatoma cells exert unexpected cytotoxicity in healthy hepatocytes has been ignored. This study demonstrated that berberine exhibited significant cytotoxicity in HepG2 cells mainly through upregulation of reactive oxygen species (ROS) production but was ineffective in normal Chang liver cells. Berberine exerted anti-invasive effect on HepG2 cells through suppression of matrix metalloproteinase-9 (MMP-9) expression. Moreover, berberine could significantly inhibit the activity of PI3K-AKT and ERK pathways. Combination treatment of ERK pathway inhibitor PD98059 or AKT pathway inhibitor LY294002 and berberine could result in a synergistic reduction on MMP-9 expression along with an inhibition of cell invasion. Enhancement of ROS production by berberine had no influence on its suppressive effects on the activity of PI3K-AKT and ERK pathways, as well as MMP-9 expression and HepG2 cell invasion. In conclusion, our results suggest that berberine may be a potential alternative against invasive hepatoma cells through PI3K-AKT and ERK pathways-dependent downregulation of MMP-9 expression. This study also provides a previously neglected insight into the investigation of plant-derived agents-based therapy against tumor invasion with the consideration of damage to healthy cells.
M2-type tumor-associated macrophages (TAMs) infiltration contributes to cancer malignant progression. However, the mechanisms for controlling recruitment and M2 polarization of macrophages by cancer cells are largely unclear. NADPH oxidase 4 (NOX4) is abundantly expressed in non-small cell lung cancer (NSCLC) and mediates cancer progression. NOXs are in close relation with cancer-related inflammation, nevertheless, whether tumoral NOXs influence microenvironmental macrophages remains undentified. This study found that there was a close association between NOX4 expression and macrophage chemotaxis in patients with NSCLC analyzed using TCGA RNA-sequencing data. NOX4 in NSCLC cells (A549 and Calu-1 cell lines) efficiently enhanced murine peritoneal macrophage migration and induces M2 polarization. Immunohistochemical analysis of clinical specimens confirmed the positive correlation of NOX4 and CD68 or CD206. The mechanical study revealed that tumoral NOX4-induced reactive oxygen species (ROS) stimulated various cytokine production, including CCL7, IL8, CSF-1 and VEGF-C, via PI3K/Akt signaling-dependent manner. Blockade of the function of these cytokines reversed NOX4 effect on macrophages. Specifically, the results showed that tumoral NOX4-educated M2 macrophages exhibited elevated JNK activity, expressed and released HB-EGF, thus facilitating NSCLC proliferation in vitro. Pretreatment of macrophages with JNK inhibitor blocked tumoral NOX4-induced HB-EGF production in M2 macrophages. Finally, in a xenograft mouse model, overexpression of NOX4 in A549 cells enhanced the tumor growth. Elimination of ROS by NAC or inhibition of NOX4 activity by GKT137831 suppressed tumor growth accompanied by reduction in macrophage infiltration and the percentage of M2 macrophages. In conclusion, our study indicates that tumoral NOX4 recruits M2 TAMs via ROS/PI3K signaling-dependent various cytokine production, thus contributing NSCLC cell growth.
Inflammatory cytokines and oxidative stress are two critical mediators in inflammation-associated cancer. Interleukin-6 (IL-6) is one of the most critical tumor-promoting cytokines in non-small cell lung cancer (NSCLC). In our recent study, we confirmed that NADPH oxidase 4 (NOX4), an important source of reactive oxygen species (ROS) production in NSCLC cells, promotes malignant progression of NSCLC. However, whether the crosstalk of NOX4 and IL-6 signalings exists in NSCLC remains undentified. In this study, we show that NOX4 expression is positively correlated with IL-6 expression in NSCLC tissues. Exogenous IL-6 treatment significantly enhances NOX4/ROS/Akt signaling in NSCLC cells. NOX4 also enhances IL-6 production and activates IL-6/STAT3 signaling in NSCLC cells. Specifically, NOX4 is confirmed to functionally interplay with IL-6 to promote NSCLC cell proliferation and survival. The in vivo results were similar to those obtained in vitro. These data indicate a novel NOX4-dependent link among IL-6 in the NSCLC microenvironment, oxidative stress in NSCLC cells and autocrined IL-6 in NSCLC cells. NOX4/Akt and IL-6/STAT3 signalings can reciprocally and positively regulate each other, leading to enhanced NSCLC cell proliferation and survival. Therefore, NOX4 may serve as a promising target against NSCLC alone with IL-6 signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.