Soybean (Glycine max) serves as a major source of protein and edible oils worldwide. The genetic and genomic bases of the adaptation of soybean to tropical regions remain largely unclear. Here, we identify the novel locus Time of Flowering 16 (Tof16), which confers delay flowering and improve yield at low latitudes and determines that it harbors the soybean homolog of LATE ELONGATED HYPOCOTYL (LHY). Tof16 and the previously identified J locus genetically additively but independently control yield under short-day conditions. More than 80% accessions in low latitude harbor the mutations of tof16 and j, which suggests that loss of functions of Tof16 and J are the major genetic basis of soybean adaptation into tropics. We suggest that maturity and yield traits can be quantitatively improved by modulating the genetic complexity of various alleles of the LHY homologs, J and E1. Our findings uncover the adaptation trajectory of soybean from its temperate origin to the tropics.
BackgroundSoybean (Glycine max) is an economically important oil and protein crop. Plant height is a key trait that significantly impacts the yield of soybean; however, research on the molecular mechanisms associated with soybean plant height is lacking. The CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9 (CRISPR-associated system 9) system is a recently developed technology for gene editing that has been utilized to edit the genomes of crop plants.ResultsHere, we designed four gRNAs to mutate four LATE ELONGATED HYPOCOTYL (LHY) genes in soybean. In order to test whether the gRNAs could perform properly in transgenic soybean plants, we first tested the CRISPR construct in transgenic soybean hairy roots using Agrobacterium rhizogenes strain K599. Once confirmed, we performed stable soybean transformation and obtained 19 independent transgenic soybean plants. Subsequently, we obtained one T1 transgene-free homozygous quadruple mutant of GmLHY by self-crossing. The phenotypes of the T2-generation transgene-free quadruple mutant plants were observed, and the results showed that the quadruple mutant of GmLHY displayed reduced plant height and shortened internodes. The levels of endogenous gibberellic acid (GA3) in Gmlhy1a1b2a2b was lower than in the wild type (WT), and the shortened internode phenotype could be rescued by treatment with exogenous GA3. In addition, the relative expression levels of GA metabolic pathway genes in the quadruple mutant of GmLHY were significantly decreased in comparison to the WT. These results suggest that GmLHY encodes an MYB transcription factor that affects plant height through mediating the GA pathway in soybean. We also developed genetic markers for identifying mutants for application in breeding studies.ConclusionsOur results indicate that CRISPR/Cas9-mediated targeted mutagenesis of four GmLHY genes reduces soybean plant height and shortens internodes from 20 to 35 days after emergence (DAE). These findings provide insight into the mechanisms underlying plant height regulatory networks in soybean.
Photoperiod responsiveness is a key factor limiting the geographic distribution of cultivated soybean and its wild ancestor. In particular, the genetic basis of the adaptation in wild soybean remains poorly understood. In this study, by combining whole-genome resequencing and genome-wide association studies we identified a novel locus, Time of Flowering 5 (Tof5), which promotes flowering and enhances adaptation to high latitudes in both wild and cultivated soybean. By genomic, genetic and transgenic analyses we showed that Tof5 encodes a homolog of Arabidopsis thaliana FRUITFULL (FUL). Importantly, further analyses suggested that different alleles of Tof5 have undergone parallel selection. The Tof5 H1 allele was strongly selected by humans after the early domestication of cultivated soybean, while Tof5 H2 allele was naturally selected in wild soybean, and in each case facilitating adaptation to high latitudes. Moreover, we found that the key flowering repressor E1 suppresses the transcription of Tof5 by binding to its promoter. In turn, Tof5 physically associates with the promoters of two important FLOWERING LOCUS T (FT), FT2a and FT5a, to upregulate their transcription and promote flowering under long photoperiods. Collectively, our findings provide insights into how wild soybean adapted to high latitudes through natural selection and indicate that cultivated soybean underwent changes in the same gene but evolved a distinct allele that was artificially selected after domestication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.