Refractory chronic GVHD (cGVHD) is an important complication after allogeneic hematopoietic SCT and is prognostic of poor outcome. MSCs are involved in tissue repair and modulating immune responses in vitro and in vivo. From April 2005 to October 2008, 19 patients with refractory cGVHD were treated with MSCs derived from the BM of volunteers. The median dose of MSCs was 0.6 × 106 cells per kg body weight. Fourteen of 19 patients (73.7%) responded well to MSCs, achieving a CR (n=4) or a PR (n=10). The immunosuppressive agent could be tapered to less than 50% of the starting dose in 5 of 14 surviving patients, and five patients could discontinue immunosuppressive agents. The median duration between MSC administration and immunosuppressive therapy discontinuation was 324 days (range, 200–550 days). No patients experienced adverse events during or immediately after MSC infusion. The 2-year survival rate was 77.7% in this study. Clinical improvement was accompanied by the increasing ratio of CD5+CD19+/CD5−CD19+ B cells and CD8+CD28−/CD8+CD28+ T cells. In conclusion, transfusion of MSCs expanded in vitro, irrespective of the donor, might be a safe and effective salvage therapy for patients with steroid-resistant, cGVHD.
Renal tubular injury and innate immune responses induced by hypoxia contribute to acute kidney injury. Accumulating evidence suggests that miR-21 overexpression protects against kidney ischemia injury. Additionally, miR-21 emerges as a key inhibitor in dendritic cell maturation. Thus, we hypothesized that miR-21 protects the kidney from IR injury by suppressing epithelial cell damage and inflammatory reaction. In this study, we investigated effects of miR-21 and its signaling pathways (PTEN/AKT/mTOR/HIF, PDCD4/NFκ-B) on kidney ischemia/reperfusion (IR) injury in vitro and in vivo. The results revealed that IR increased miR-21, HIF1α, and 2α expression in vivo and in vitro. MiR-21 interacted with HIF1α and 2α through the PTEN/AKT/mTOR pathway. Moreover, inhibition of miR-21 activated PDCD4/NFκ-B pathways, which are critical for dendritic cell maturation. Renal IR triggers local inflammation by inducing the dendritic cell maturation and promoting the secretion of IL-12, IL-6, and TNF-α cytokines. Knockdown of miR-21 intensified the effect of IR on tubular epithelial cell apoptosis and dendritic cell maturation. Our results suggested that IR-inducible miR-21 protects epithelial cells from IR injury via a feedback interaction with HIF (PTEN/AKT/mTOR/HIF/miR-21) and by inhibiting maturation of DCs through the PDCD4/NF-κB pathway. These findings highlight new therapeutic opportunities in AKI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.