Novel reassortant H7N9 viruses were associated with severe and fatal respiratory disease in three patients. (Funded by the National Basic Research Program of China and others.).
Background: Recently, dyslipidaemia was observed in patients with coronavirus disease 2019 (COVID-19), especially in severe cases. This study aimed to explore the predictive value of blood lipid levels for COVID-19 severity. Methods: All patients with COVID-19 admitted to HwaMei Hospital, University of Chinese Academy of Sciences, from January 23 to April 20, 2020, were included in this retrospective study. General clinical characteristics and laboratory data (including blood lipid parameters) were obtained, and their predictive values for the severity were analysed. Results: In total, 142 consecutive patients with COVID-19 were included. The non-severe group included 125 cases, and 17 cases were included in the severe group. Total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and apolipoprotein A1 (ApoA1) at baseline were signi cantly lower in the severe group. ApoA1 and interleukin-6 (IL-6) were recognized as independent risk factors for COVID-19 severity. ApoA1 had the highest area under the receiver operator characteristic curve (AUC) among all the single markers (AUC: 0.896, 95% CI: 0.834-0.941). Moreover, the risk model established using ApoA1 and IL-6 enhanced the predictive value (AUC: 0.977, 95% CI: 0.932-0.995). On the other hand, ApoA1 levels were elevated in the severe group during treatment, and there was no signi cant difference between the severe and non-severe groups during the recovery stage of the disease. Conclusion: The blood lipid pro le in severe COVID-19 patients is quite different from that in non-severe cases. Serum ApoA1 could severe as a good indictor to re ect the severity of COVID-19.
The beginning of the twenty-rst century has been marked by three distinct waves of zoonotic coronavirus outbreaks into the human population. The current pandemic COVID-19 (Coronavirus disease 2019) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). With a rapid infection rate, it is a global threat endangering the livelihoods of millions worldwide. Currently, and despite the collaborative efforts of governments, researchers, and the pharmaceutical industries, there are no substantially signi cant treatment protocols for the disease. To address the need for such an immediate call of action, we leveraged the largest dataset of drug-induced transcriptomic perturbations, public SARS-CoV-2 transcriptomic datasets, and expression pro les from normal lung transcriptomes. Our unbiased systems biology approach not only shed light on previously unexplored molecular details of SARS-CoV-2 infection (e.g., interferon signaling, in ammation and ACE2 co-expression hallmarks in normal and infected lungs) but most importantly prioritized more than 50 repurposable drug candidates (e.g., Corticosteroids, Janus kinase and Bruton kinase inhibitors). Further clinical investigation of these FDA approved candidates as monotherapy or in combination with an antiviral regimen (e.g., Remdesivir) could lead to promising outcomes in COVID-19 patients.
We report the use of seed-mediated growth as a simple and versatile approach to the synthesis of penta-twinned Cu nanorods with uniform diameters and controllable aspect ratios. The success of this approach relies on our recently demonstrated synthesis of Pd decahedra as uniform samples, together with tightly controlled sizes in the range of 6-20 nm. When employed as a seed, the Pd decahedron can direct the heterogeneous nucleation and growth of Cu along the five-fold axis to produce a nanorod with a uniform diameter defined by the lateral dimension of the original seed.Due to a large mismatch in lattice constant between Cu and Pd (7.1%), the deposited Cu is forced to grow only along one side of the Pd decahedral seed, generating a nanorod with an asymmetric distribution of Cu, with the Pd seed being situated at one of the two ends. According to their extinction spectra, the as-obtained Cu nanorods could form a stable colloidal suspension in water and be stored in a capped vial under the ambient conditions for at least 6 months without noticeable degradation. This excellent stability allows us to systematically investigate the sizedependent surface plasmon resonance properties of the penta-twinned Cu nanorods. With their transverse modes being positioned at 560 nm, their longitudinal modes can be readily tuned from the visible to the near-infrared region by controlling their aspect ratios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.