P. Gong et al. land-cover classification system as well as the International Geosphere-Biosphere Programme (IGBP) system. Using the four classification algorithms, we obtained the initial set of global land-cover maps. The SVM produced the highest overall classification accuracy (OCA) of 64.9% assessed with our test samples, with RF (59.8%), J4.8 (57.9%), and MLC (53.9%) ranked from the second to the fourth. We also estimated the OCAs using a subset of our test samples (8629) each of which represented a homogeneous area greater than 500 m × 500 m. Using this subset, we found the OCA for the SVM to be 71.5%. As a consistent source for estimating the coverage of global land-cover types in the world, estimation from the test samples shows that only 6.90% of the world is planted for agricultural production. The total area of cropland is 11.51% if unplanted croplands are included. The forests, grasslands, and shrublands cover 28.35%, 13.37%, and 11.49% of the world, respectively. The impervious surface covers only 0.66% of the world. Inland waterbodies, barren lands, and snow and ice cover 3.56%, 16.51%, and 12.81% of the world, respectively.
BackgroundThe brown planthopper, Nilaparvata lugens, the most destructive pest of rice, is a typical monophagous herbivore that feeds exclusively on rice sap, which migrates over long distances. Outbreaks of it have re-occurred approximately every three years in Asia. It has also been used as a model system for ecological studies and for developing effective pest management. To better understand how a monophagous sap-sucking arthropod herbivore has adapted to its exclusive host selection and to provide insights to improve pest control, we analyzed the genomes of the brown planthopper and its two endosymbionts.ResultsWe describe the 1.14 gigabase planthopper draft genome and the genomes of two microbial endosymbionts that permit the planthopper to forage exclusively on rice fields. Only 40.8% of the 27,571 identified Nilaparvata protein coding genes have detectable shared homology with the proteomes of the other 14 arthropods included in this study, reflecting large-scale gene losses including in evolutionarily conserved gene families and biochemical pathways. These unique genomic features are functionally associated with the animal’s exclusive plant host selection. Genes missing from the insect in conserved biochemical pathways that are essential for its survival on the nutritionally imbalanced sap diet are present in the genomes of its microbial endosymbionts, which have evolved to complement the mutualistic nutritional needs of the host.ConclusionsOur study reveals a series of complex adaptations of the brown planthopper involving a variety of biological processes, that result in its highly destructive impact on the exclusive host rice. All these findings highlight potential directions for effective pest control of the planthopper.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-014-0521-0) contains supplementary material, which is available to authorized users.
SummaryThe key regulator of salicylic acid (SA)-mediated resistance, NPR1, is functionally conserved in diverse plant species, including rice ( Oryza sativa L.). Investigation in depth is needed to provide an understanding of NPR1 -mediated resistance and a practical strategy for the improvement of disease resistance in the model crop rice. The rice genome contains five NPR1 -like genes. In our study, three rice homologous genes, OsNPR1 / NH1 , OsNPR2 / NH2 and OsNPR3 , were found to be induced by rice bacterial blight Xanthomonas oryzae pv.oryzae and rice blast Magnaporthe grisea , and the defence molecules benzothiadiazole, methyl jasmonate and ethylene. We confirmed that OsNPR1 is the rice orthologue by complementing the Arabidopsis npr1 mutant. Over-expression of OsNPR1 conferred disease resistance to bacterial blight, but also enhanced herbivore susceptibility in transgenic plants. The OsNPR1-green fluorescent protein (GFP) fusion protein was localized in the cytoplasm and moved into the nucleus after redox change. Mutations in its conserved cysteine residues led to the constitutive localization of OsNPR1(2CA)-GFP in the nucleus and also abolished herbivore hypersensitivity in transgenic rice. Different subcellular localizations of OsNPR1 antagonistically regulated SA-and jasmonic acid (JA)-responsive genes, but not SA and JA levels, indicating that OsNPR1 might mediate antagonistic cross-talk between the SA-and JA-dependent pathways in rice. This study demonstrates that rice has evolved an SA-mediated systemic acquired resistance similar to that in Arabidopsis, and also provides a practical approach for the improvement of disease resistance without the penalty of decreased herbivore resistance in rice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.