Background A physiological small animal model that resembles COVID-19 with low mortality is lacking. Methods Molecular docking on the binding between angiotensin-converting enzyme 2 (ACE2) of common laboratory mammals and the receptor-binding domain of the surface spike protein of SARS-CoV-2 suggested that the golden Syrian hamster is an option. Virus challenge, contact transmission, and passive immunoprophylaxis were performed. Serial organ tissues and blood were harvested for histopathology, viral load and titre, chemokine/cytokine assay, and neutralising antibody titre. Results The Syrian hamster could be consistently infected by SARS-CoV-2. Maximal clinical signs of rapid breathing, weight loss, histopathological changes from the initial exudative phase of diffuse alveolar damage with extensive apoptosis to the later proliferative phase of tissue repair, airway and intestinal involvement with virus nucleocapsid protein expression, high lung viral load, and spleen and lymphoid atrophy associated with marked cytokine activation were observed within the first week of virus challenge. The lung virus titre was between 105-107 TCID50/g. Challenged index hamsters consistently infected naïve contact hamsters housed within the same cage, resulting in similar pathology but not weight loss. All infected hamsters recovered and developed mean serum neutralising antibody titre ≥1:427 fourteen days post-challenge. Immunoprophylaxis with early convalescent serum achieved significant decrease in lung viral load but not in lung pathology. No consistent non-synonymous adaptive mutation of the spike was found in viruses isolated from infected hamsters. Conclusions Besides satisfying the Koch’s postulates, this readily available hamster model is an important tool for studying transmission, pathogenesis, treatment, and vaccination against SARS-CoV-2.
Background Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is believed to be mostly transmitted by medium-to-large sized respiratory droplets although airborne transmission is theoretically possible in healthcare settings involving aerosol-generating procedures. Exposure to respiratory droplets can theoretically be reduced by surgical mask usage. However, there is a lack of experimental evidence supporting surgical mask usage for prevention of COVID-19. Methods We used a well-established golden Syrian hamster SARS-CoV-2 model. We placed SARS-CoV-2-challenged index hamsters and naïve hamsters into closed system units each comprising two different cages separated by a polyvinyl chloride air porous partition with unidirectional airflow within the isolator. The effect of a surgical mask partition placed in between the cages was investigated. Besides clinical scoring, hamster specimens were tested for viral load, histopathology, and viral nucleocapsid antigen expression. Results Non-contact transmission was found in 66.7% (10/15) of exposed naïve hamsters. Surgical mask partition for challenged index or naïve hamsters significantly reduced transmission to 25% (6/24, P=0.018). Surgical mask partition for challenged index hamsters significantly reduced transmission to only 16.7% (2/12, P=0.019) of exposed naïve hamsters. Unlike the severe COVID-19 manifestations of challenged hamsters, infected naïve hamsters had lower clinical scores, milder histopathological changes, and lower viral nucleocapsid antigen expression in respiratory tract tissues. Conclusions SARS-CoV-2 could be transmitted by respiratory droplets or airborne droplet nuclei in the hamster model. Such transmission could be reduced by surgical mask usage, especially when masks were worn by infected individuals.
Skin stem cells can regenerate epidermal appendages; however, hair follicles (HF) lost as a result of injury are barely regenerated. Here we show that macrophages in wounds activate HF stem cells, leading to telogen–anagen transition (TAT) around the wound and de novo HF regeneration, mostly through TNF signalling. Both TNF knockout and overexpression attenuate HF neogenesis in wounds, suggesting dose-dependent induction of HF neogenesis by TNF, which is consistent with TNF-induced AKT signalling in epidermal stem cells in vitro. TNF-induced β-catenin accumulation is dependent on AKT but not Wnt signalling. Inhibition of PI3K/AKT blocks depilation-induced HF TAT. Notably, Pten loss in Lgr5+ HF stem cells results in HF TAT independent of injury and promotes HF neogenesis after wounding. Thus, our results suggest that macrophage-TNF-induced AKT/β-catenin signalling in Lgr5+ HF stem cells has a crucial role in promoting HF cycling and neogenesis after wounding.
Summary Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is transmitted largely by respiratory droplets or airborne aerosols. Despite being frequently found in the immediate environment and feces of patients, evidence supporting the oral acquisition of SARS-CoV-2 is unavailable. Using the Syrian hamster model, we demonstrate that the severity of pneumonia induced by the intranasal inhalation of SARS-CoV-2 increases with virus inoculum. SARS-CoV-2 retains its infectivity in vitro in simulated human-fed-gastric and fasted-intestinal fluid after 2 h. Oral inoculation with the highest intranasal inoculum (10 5 PFUs) causes mild pneumonia in 67% (4/6) of the animals, with no weight loss. The lung histopathology score and viral load are significantly lower than those infected by the lowest intranasal inoculum (100 PFUs). However, 83% of the oral infections (10/12 hamsters) have a level of detectable viral shedding from oral swabs and feces similar to that of intranasally infected hamsters. Our findings indicate that the oral acquisition of SARS-CoV-2 can establish subclinical respiratory infection with less efficiency.
Background Coronavirus Disease 2019 (COVID-19) is primarily an acute respiratory tract infection. Distinctively, a substantial proportion of COVID-19 patients develop olfactory dysfunction of uncertain underlying mechanism which can be severe and prolonged. The roles of inflammatory obstruction of the olfactory clefts leading to conductive impairment, inflammatory cytokines affecting olfactory neuronal function, destruction of olfactory neurons or their supporting cells, and direct invasion of olfactory bulbs, in causing olfactory dysfunction are uncertain. Methods In this study, we investigated the location for the pathogenesis of SARS-CoV-2 from the olfactory epithelium (OE) of the nasopharynx to the olfactory bulb of golden Syrian hamsters. Results After intranasal inoculation with SARS-CoV-2, inflammatory cell infiltration and proinflammatory cytokine/chemokine responses were detected in the nasal turbinate tissues which peaked between 2 to 4 days post-infection with the highest viral load detected at day 2 post-infection. Besides the nasopharyngeal pseudo-columnar ciliated respiratory epithelial cells, SARS-CoV-2 viral antigens were also detected in the more superficial mature olfactory sensory neurons labeled by olfactory marker protein (OMP), the less mature olfactory neurons labelled by Tuj1 at more basal position, and the sustentacular cells which provide metabolic and physical support for the olfactory neurons, resulting in apoptosis and severe destruction of the OE. During the whole course of infection, SARS-CoV-2 viral antigens were not detected in the olfactory bulb. Conclusions Besides acute inflammation at OE, infection of mature and immature olfactory neurons, and the supporting sustentacular cells by SARS-CoV-2 may contribute to the unique olfactory dysfunction of COVID-19 which is not reported with SARS-CoV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.