An outbreak of coronavirus disease 2019 (COVID-19) 1-3 , caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 4 , has spread globally. Countermeasures are needed to treat and prevent further dissemination of the virus. Here we report the isolation of two specific human monoclonal antibodies (termed CA1 and CB6) from a patient convalescing from COVID-19. CA1 and CB6 demonstrated potent SARS-CoV-2-specific neutralization activity in vitro. In addition, CB6 inhibited infection with SARS-CoV-2 in rhesus monkeys in both prophylactic and treatment settings. We also performed structural studies, which revealed that CB6 recognizes an epitope that overlaps with angiotensin-converting enzyme 2 (ACE2)-binding sites in the SARS-CoV-2 receptor-binding domain, and thereby interferes with virus-receptor interactions by both steric hindrance and direct competition for interface residues. Our results suggest that CB6 deserves further study as a candidate for translation to the clinic.
IMPORTANCE A vaccine against coronavirus disease 2019 (COVID-19) is urgently needed. OBJECTIVE To evaluate the safety and immunogenicity of an investigational inactivated whole-virus COVID-19 vaccine in China. INTERVENTIONS In the phase 1 trial, 96 participants were assigned to 1 of the 3 dose groups (2.5, 5, and 10 μg/dose) and an aluminum hydroxide (alum) adjuvant-only group (n = 24 in each group), and received 3 intramuscular injections at days 0, 28, and 56. In the phase 2 trial, 224 adults were randomized to 5 μg/dose in 2 schedule groups (injections on days 0 and 14 [n = 84] vs alum only [n = 28], and days 0 and 21 [n = 84] vs alum only [n = 28]). DESIGN, SETTING, AND PARTICIPANTS Interim analysis of ongoing randomized, double-blind, placebo-controlled, phase 1 and 2 clinical trials to assess an inactivated COVID-19 vaccine. The trials were conducted in Henan Province, China, among 96 (phase 1) and 224 (phase 2) healthy adults aged between 18 and 59 years. Study enrollment began on April 12, 2020. The interim analysis was conducted on June 16, 2020, and updated on July 27, 2020. MAIN OUTCOMES AND MEASURES The primary safety outcome was the combined adverse reactions 7 days after each injection, and the primary immunogenicity outcome was neutralizing antibody response 14 days after the whole-course vaccination, which was measured by a 50% plaque reduction neutralization test against live severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). RESULTS Among 320 patients who were randomized (mean age, 42.8 years; 200 women [62.5%]), all completed the trial up to 28 days after the whole-course vaccination. The 7-day adverse reactions occurred in 3 (12.5%), 5 (20.8%), 4 (16.7%), and 6 (25.0%) patients in the alum only, low-dose, medium-dose, and high-dose groups, respectively, in the phase 1 trial; and in 5 (6.0%) and 4 (14.3%) patients who received injections on days 0 and 14 for vaccine and alum only, and 16 (19.0%) and 5 (17.9%) patients who received injections on days 0 and 21 for vaccine and alum only, respectively, in the phase 2 trial. The most common adverse reaction was injection site pain, followed by fever, which were mild and self-limiting; no serious adverse reactions were noted. The geometric mean titers of neutralizing antibodies in the low-, medium-, and high-dose groups at day 14 after 3 injections were 316 (95% CI, 218-457), 206 (95% CI, 123-343), and 297 (95% CI, 208-424), respectively, in the phase 1 trial, and were 121 (95% CI, 95-154) and 247 (95% CI, 176-345) at day 14 after 2 injections in participants receiving vaccine on days 0 and 14 and on days 0 and 21, respectively, in the phase 2 trial. There were no detectable antibody responses in all alum-only groups. CONCLUSIONS AND RELEVANCE In this interim report of the phase 1 and phase 2 trials of an inactivated COVID-19 vaccine, patients had a low rate of adverse reactions and demonstrated immunogenicity; the study is ongoing. Efficacy and longer-term adverse event assessment will require phase 3 trials.
The rapid spread of coronavirus SARS-CoV-2 greatly threatens global public health but no prophylactic vaccine is available. Here, we report the generation of a replication-incompetent recombinant serotype 5 adenovirus, Ad5-S-nb2, carrying a codon-optimized gene encoding Spike protein (S). In mice and rhesus macaques, intramuscular injection with Ad5-S-nb2 elicits systemic S-specific antibody and cell-mediated immune (CMI) responses. Intranasal inoculation elicits both systemic and pulmonary antibody responses but weaker CMI response. At 30 days after a single vaccination with Ad5-S-nb2 either intramuscularly or intranasally, macaques are protected against SARS-CoV-2 challenge. A subsequent challenge reveals that macaques vaccinated with a 10-fold lower vaccine dosage (1 × 10 10 viral particles) are also protected, demonstrating the effectiveness of Ad5-S-nb2 and the possibility of offering more vaccine dosages within a shorter timeframe. Thus, Ad5-S-nb2 is a promising candidate vaccine and warrants further clinical evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.