A novel, bioadsorbent material of polyethylenimine-modified magnetic chitosan microspheres enwrapping magnetic silica nanoparticles (Fe 3 O 4 -SiO 2 -CTS-PEI) was prepared under relatively mild conditions. The characterization results indicated that the adsorbent exhibited high acid resistance and magnetic responsiveness. The Fe 3 O 4 loss of the adsorbent was measured as 0.09% after immersion in pH 2.0 water for 24 h, and the saturated magnetization was 11.7 emu/g. The introduction of PEI obviously improved the adsorption capacity of Cr(VI) onto the adsorbent by approximately 2.5 times. The adsorption isotherms and kinetics preferably fit the Langmuir model and the pseudo-second-order model. The maximum adsorption capacity was determined as 236.4 mg/g at 258C, which was much improved compared to other magnetic chitosan materials, and the equilibrium was reached within 60 to 120 min. The obtained thermodynamic parameters revealed the spontaneous and endothermic nature of the adsorption process. Furthermore, the Cr(VI)-adsorbed adsorbent could be effectively regenerated using a 0.1 mol/L NaOH solution, and the adsorbent showed a good reusability. Due to the properties of good acid resistance, strong magnetic responsiveness, high adsorption capacity, and relatively rapid adsorption rate, the Fe 3 O 4 -SiO 2 -CTS-PEI microspheres have a potential use in Cr(VI) removal from acidic wastewater.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.