The identification and targeted therapy of cells involved in hepatocellular carcinoma (HCC) recurrence remain challenging. Here, we generated a monoclonal antibody against recurrent HCC, 1B50-1, that bound the isoform 5 of the α2δ1 subunit of voltage-gated calcium channels and identified a subset of tumor-initiating cells (TICs) with stem cell-like properties. A surgical margin with cells detected by 1B50-1 predicted rapid recurrence. Furthermore, 1B50-1 had a therapeutic effect on HCC engraftments by eliminating TICs. Finally, α2δ1 knockdown reduced self-renewal and tumor formation capacities and induced apoptosis of TICs, whereas its overexpression led to enhanced sphere formation, which is regulated by calcium influx. Thus, α2δ1 is a functional liver TIC marker, and its inhibitors may serve as potential anti-HCC drugs.
BackgroundGiven the emerging role of microRNA in tumor disease progression, we investigated the association between microRNA expression, liver metastasis and prognosis of colorectal cancer.MethodsColorectal cancer tissues from patients with or without liver metastases were profiled to identify differentially expressed microRNA. Expression profile was further assessed using quantitative reverse transcription PCR and in situ hybridization. Correlation between miR-181a expression, the most differentially expressed microRNA, between patients with and without liver metastasis, and its downstream target genes were investigated using qRT-PCR. Luciferase reporter assay was conducted to establish functional association between miR-181a and its target genes. Manipulation of miR-181a expression and its consequences in tumor growth and metastasis were demonstrated in various in vitro and in vivo models.ResultsmiR-181a was revealed being the most elevated in CRC with liver metastases. miR-181a expression correlated with advanced stage, distant metastasis, and served as an independent prognostic factor of poor overall survival. Stable transfection of CRC cell lines with miR-181a promoted cell motility and invasion, as well as tumor growth and liver metastasis,while silencing its expression resulted in reduced migration and invasion. Additionally, we identified WIF-1 as direct and functional targets of miR-181a. Ectopic expression of miR-181a suppressed the epithelial markers E-cadherin and β-catenin, while enhanced the mesenchymal markers vimentin.ConclusionOur data demonstrate that miR-181a expression is associated with CRC liver metastasis and survival. miR-181a has strong tumor-promoting effects through inhibiting the expression of WIF-1, and its potential role in promoting epithelial-mesenchymal transition.
Accumulating evidence shows that microRNAs, functioning as either oncogenes or tumour suppressors by negatively regulating downstream target genes that are actively involved in tumour initiation and progression, may be promising biomarkers and therapy targets. Data mining through a microRNA chip database indicated that let-7c may be associated with tumour metastasis. Here, we confirmed that down-regulation of let-7c in primary cancer tissues was significantly associated with metastases, advanced TNM stages and poor survival of colorectal cancer patients. Moreover, ectopic expression of let-7c in a highly metastatic Lovo cell line remarkably suppressed cell migration and invasion in vitro by the down-regulation of K-RAS, MMP11 and PBX3, as well as tumour growth and metastases in vivo, whereas inhibition of let-7c in low-metastatic HT29 cells increased cell motility and invasion by the enhanced gene expression of K-RAS, MMP11 and PBX3. Interestingly, the luciferase reporters' activities with the 3'-UTRs of K-RAS, MMP11 and PBX3 were inhibited significantly by let-7c. Importantly, rescue experiments involving the over-expression of these genes without their 3'-UTRs completely reversed the effects of let-7c on tumour metastasis, both in vitro and in vivo. Finally, the levels of let-7c were inversely correlated with those of MMP11 and PBX3, but not with those of K-RAS. Taken together, these results demonstrate that let-7c, apart from its tumour growth suppression role, also functions as a tumour metastasis suppressor in colorectal cancer by directly destabilizing the mRNAs of MMP11 and PBX3 at least.
Cell migration, which involves acto-myosin dynamics, cell adhesion, membrane trafficking and signal transduction, is a prerequisite for cancer cell metastasis. Here, we report that an actin-dependent molecular motor, unconventional myosin Va, is involved in this process and implicated in cancer metastasis. The mRNA expression of myosin Va is increased in a number of highly metastatic cancer cell lines and metastatic colorectal cancer tissues. Suppressing the expression of myosin Va by lentivirus-based RNA interference in highly metastatic cancer cells impeded their migration and metastasis capabilities both in vitro and in vivo. In addition, the levels of myosin Va in cancer cell lines are positively correlated with the expression of Snail, a transcriptional repressor that triggers epithelial-mesenchymal transition. Repression or overexpression of Snail in cancer cells caused reduced or elevated levels of myosin Va, respectively. Furthermore, Snail can bind to an E-box of the myosin Va promoter and induce its activity, which indicates that Snail might act as a transcriptional activator. These data demonstrate an essential role of myosin Va in cancer cell migration and metastasis, and suggest a novel target for Snail in its regulation of cancer progression.Cancer cell metastasis is a multistep, complex process including migration of detached cells from the primary tumor through the surrounding stroma, invasion of the cells into the circulatory system, extravasation and arresting at distant secondary sites. Many of these steps require cell motility, which is presumably driven by cycles of actin polymerization, cell adhesion and acto-myosin contraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.