In recent years, an increasing number of biological experiments and clinical reports have shown that lncRNA is closely related to the development of various complex human diseases.
Dynamic fitness landscape analyses contain different metrics to attempt to analyze optimization problems. In this article, some of dynamic fitness landscape metrics are selected to discuss differential evolution (DE) algorithm properties and performance. Based on traditional differential evolution algorithm, benchmark functions and dynamic fitness landscape measures such as fitness distance correlation for calculating the distance to the nearest global optimum, ruggedness based on entropy, dynamic severity for estimating dynamic properties, a fitness cloud for getting a visual rendering of evolvability and a gradient for analyzing micro changes of benchmark functions in differential evolution algorithm, the authors obtain useful results and try to apply effective data, figures and graphs to analyze the performance differential evolution algorithm and make conclusions. Those metrics have great value and more details as DE performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.