Hydrogen production is the key step for the future hydrogen economy. As a promising H production route, electrolysis of water suffers from high overpotentials and high energy consumption. This study proposes an N-doped CoP as the novel and effective electrocatalyst for hydrogen evolution reaction (HER) and constructs a coupled system for simultaneous hydrogen and sulfur production. Nitrogen doping lowers the d-band of CoP and weakens the H adsorption on the surface of CoP because of the strong electronegativity of nitrogen as compared to phosphorus. The H adsorption that is close to thermos-neutral states enables the effective electrolysis of the HER. Only -42 mV is required to drive a current density of -10 mA cm for the HER. The oxygen evolution reaction in the anode is replaced by the oxidation reaction of Fe , which is regenerated by a coupled H S absorption reaction. The coupled system can significantly reduce the energy consumption of the HER and recover useful sulfur sources.
To achieve the goals of saving water and being salt‐free in the coloration of cotton fabric with reactive dye, nonionic reverse micelles were prepared and optimised with a surfactant, Triton X‐100, n‐octanol and isooctane by injecting a small amount of CI Reactive Red 195 aqueous solution. The adsorption, diffusion and fixation of this dye on cotton fabric in Triton X‐100 reverse micelle and bulk water were then investigated. The equilibrium and kinetic data of the dye adsorption process were evaluated. The colour strength and fixation rate of cotton fabrics dyed in the micelle and in bulk water were also examined and compared. The results indicated that the amount of dye adsorbed increased with the increasing temperature and the initial dye concentration. The dye adsorption process could be described using the Langmuir isotherm and pseudo‐second‐order kinetic equations. It was found that CI Reactive Red 195 showed a stronger adsorption property on cotton fabric in Triton X‐100 reverse micelle than in bulk water without the addition of sodium chloride. Using Triton X‐100 reverse micelle as the dyeing medium offered the reactive dye better diffusion performance within the cotton fibre as compared with bulk water. Moreover, higher fixation of the dyes absorbed on the cotton fibre was achieved when the optimum concentration of sodium carbonate was used as the alkali agent in Triton X‐100 reverse micelle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.