Retrieval experiment was made for global total column ozone using the first year measurements of Total Ozone Unit (TOU) on board the second generation polar orbiting meteorological satellite of China, FY-3/A. The retrieval results were analyzed and validated by comparison with AURA/OMI, Meteop/GOME-2 global ozone products and ground-based ozone measurement data. The qualititative comparisons over the globe especially over Antarctica and the Tibetan Plateau show that the spatial and temporal distribution characteristics are consistent with OMI and GOME-2 products. The quantitative comparisons with ground-based measurements and AURA/OMI ozone product were made over 74 stations, the TOU total ozone retrieval has a 3% rms relative error compared with AURA/OMI ozone product and 4.2% rms relative error with ground-based measurements. The maximum difference between satellite retrieval and ground-based measurements was found in the Antarctica ozone hole. The TOU global ozone product is operational and distributed to all users.Total Ozone Unit, total column ozone, FY-3 satellite, retrieval, validation Citation:Wang W H, Zhang X Y, An X Q, et al. Analysis for retrieval and validation results of FY-3 Total Ozone Unit (TOU).
FY-3 satellites are Chinese second-generation polar orbit meteorological satellite series. Ultraviolet Total Ozone Unit (TOU) is one of the main payloads on FY-3 satellite and the first instrument for daily global coverage of total ozone monitoring in China. The main purpose of TOU is to measure the Earth backscatter ultraviolet radiation for retrieving daily global map of atmospheric ozone. TOU will provide the important parameters for environmental monitoring, climate forecasting and global climate changing research. At present, the in-orbit testing of TOU has accomplished and won a consummation, and it will be delivered to National Satellite Meteorological Center for the operational phase of the project. In this paper we introduce the instrument of TOU and its measuring principle, in general. We also analyze the recent working status of the instrument, including the sensitivity, measuring precision of solar irradiance, diffuser degradation and wavelength drift. The inversion results show that TOU can provide good global ozone maps, and a comparison with the OMI total ozone product shows that their RMS deviation is about 5%. It is indicated that the satisfied global distribution of total ozone can be obtained through TOU observational data and self-developed inversion method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.