The Yermak Plateau is located north of Svalbard at the entrance to the Arctic Ocean, i.e. in an area highly sensitive to climate change. A multi proxy approach was carried out on Core PS92/039-2 to study glacial-interglacial environmental changes at the northern Barents Sea margin during the last 160 ka. The main emphasis was on the reconstruction of sea ice cover, based on the sea ice proxy IP 25 and the related phytoplankton-sea ice index PIP 25. Sea ice was present most of the time but showed significant temporal variability decisively affected by movements of the Svalbard Barents Sea Ice Sheet. For the first time, we prove the occurrence of seasonal sea ice at the eastern Yermak Plateau during glacial intervals, probably steered by a major northward advance of the ice sheet and the formation of a coastal polynya in front of it. Maximum accumulation of terrigenous organic carbon, IP 25 and the phytoplankton biomarkers (brassicasterol, dinosterol, HBI III) can be correlated to distinct deglaciation events. More severe, but variable sea ice cover prevailed at the Yermak Plateau during interglacials. The general proximity to the sea ice margin is further indicated by biomarker (GDGT)-based sea surface temperatures below 2.5°C.
Sediment traps were deployed at 870 m water-depth from August 2008 to September at station DM in the Chukchi Sea (western Arctic Ocean) in an area covered by sea ice in winter to determine seasonal fluxes of HBIs and phytoplankton sterols in order to improve our understanding of sea ice proxies. HBI-III fluxes and P III IP 25 are for the first time documented in the Arctic Ocean to evaluate their significance for paleoclimate reconstructions. Highest mass fluxes were found from mid-July 2009 to September 2009 contrasting with low values during all other months (i.e., December 2008 to early July 2009). Indeed, during the winter months IP 25 was not detected but increased by a factor of nine over summer 2009 reflecting sea ice algae and pelagic phytoplankton production at the sea ice edge. High HBIs and low sterol fluxes at the end of summer 2008 are consistent with the complete melting of sea ice and post-bloom conditions. We found that HBI-III was more abundant in the early stage of sea ice retreat that characterizes the marginal ice zone. These sea ice biomarkers were also measured in surface sediments across a wide range of sea ice cover in the western Arctic region. Higher IP 25 values were found in the southeastern Chukchi Sea and decreased westwards where sea ice conditions are less severe. Stronger positive linear relationship were found between the sea ice proxy indexes P B IP 25 and P III IP 25 and spring sea ice concentrations than with IP 25 in agreement with earlier findings from other Arctic and sub-Arctic regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.