correspondence between case reports and fatality data. These data also establish that mortality rates are not affected by epidemic phase 24. Further confirmation of these results is provided by an analysis of the Aberdeen data (N.B.M-B., P.R. and B.T.G., manuscript in preparation). Concerning infection-induced mortality rates, classic work by Butler 24 , Bartlett 25 , Creighton 5 and others indicates significant mortality due to measles and whooping cough during these periods. Estimates of case fatality rates for measles vary widely, from 1-2% in the postwar era up to 46% prewar 14,26,27 , whereas estimates for whooping cough are in the 3-15% range 24. Data analysis These time series contain a substantial annual component and are further complicated by increasing population sizes over the two periods examined. Hence, analyses of the relationship between measles and whooping cough outbreaks were carried out on de-trended data. We used three separate methods. First, Pearson correlation coefficients were estimated for data aggregated over each epidemic year (October to October). Second, we carried out a linear regression of annual counts of measles against whooping cough and used the slope as a measure of synchrony. The results of this technique were qualitatively identical to those of the Pearson correlation, so we present only those. Finally, we also used Wavelet spectra to explore phase differences between filtered time series 28,29. Further information can be found in the Supplementary Information.
A r t i c l e sThe dog tapeworm E. granulosus is one of a group of medically important parasitic helminths of the family Taeniidae (Platyhelminthes; Cestoda; Cyclophyllidea) that infect at least 50 million people globally 1 . Its life cycle involves two mammals, including an intermediate host, usually a domestic or wild ungulate (humans are accidental intermediate hosts) and a canine-definitive host, such as the domestic dog. The larval (metacestode) stage causes hydatidosis (cystic hydatid disease; cystic echinococcosis), a chronic cyst-forming disease in the intermediate (human) host. Currently, up to 3 million people are infected with E. granulosus 2,3 , and, in some areas, 10% of the population has detectable hydatid cysts by abdominal ultrasound and chest X-ray 4,5 .E. granulosus has no gut, circulatory or respiratory organs. It is monoecious, producing diploid eggs that give rise to ovoid embryos, the oncospheres. Strobilization is a notable feature of cestode biology, whereby proglottids bud distally from the anterior scolex, resulting in the production of tandem reproductive units exhibiting increasing degrees of development. A unique characteristic of the larvae (protoscoleces, PSCs) within the hydatid cyst is an ability to develop bidirectionally into an adult worm in the dog gastrointestinal tract or into a secondary hydatid cyst in the intermediate (human) host, a process triggered by bile acids 6 . Another distinct feature of E. granulosus is its capacity to infect and adapt to a large number of mammalian species as intermediate hosts, which has contributed to its cosmopolitan global distribution.Here we report the sequence and analysis of the E. granulosus genome. Comprising nine pairs of chromosomes 7 , it is one of the first cestode genomes to be sequenced and complements the recent publication by Tsai et al. 8 of a high-quality genome for Echinococcus multilocularis (the cause of alveolar echinococcosis), together with draft genomes of three other tapeworm species including E. granulosus. Our study provides insights into the biology, development, differentiation, evolution and host interaction of E. granulosus and has identified a range of drug and vaccine targets that can facilitate the development of new intervention tools for hydatid treatment and control. Cystic echinococcosis (hydatid disease), caused by the tapeworm E. granulosus, is responsible for considerable human morbidity and mortality. This cosmopolitan disease is difficult to diagnose, treat and control. We present a draft genomic sequence for the worm comprising 151.6 Mb encoding 11,325 genes. Comparisons with the genome sequences from other taxa show that E. granulosus has acquired a spectrum of genes, including the EgAgB family, whose products are secreted by the parasite to interact and redirect host immune responses. We also find that genes in bile salt pathways may control the bidirectional development of E. granulosus, and sequence differences in the calcium channel subunit EgCa v b 1 may be associated with praziquantel sens...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.