Cytokine-induced killer (CIK) cell immunotherapy represents an effective treatment strategy for treating hepatocellular carcinoma (HCC). However, the therapeutic benefits of CIK cell treatment can be influenced by differences in complex immune microenvironment between patients. Herein, we investigated the relationship between PD-L1 expression and survival benefits of CIK cell immunotherapy in HCC patients. This retrospective study included 448 HCC patients: 217 cases underwent hepatectomy alone; 231 cases received hepatectomy and post-operative CIK cell transfusion. Immunohistochemistry was used to measure PD-L1 expression in tumor tissue sections from all patients. Meanwhile, flow cytometry was performed to explore the relationship between PD-L1 expression and localized inflammatory response in HCC microenvironment. We found a significantly improved prognosis in CIK treatment group compared with surgery alone group. In the CIK treatment group, higher PD-L1 expression was observed in patients who exhibited long-term survival benefit. Survival analysis showed patients with 5% PD-L1 expression had better overall survival (OS) and recurrence-free survival (RFS) than patients with 1-5% or <1% PD-L1 expression, particularly in the subgroup with high hepatitis B viral load. By contrast, PD-L1 expression did not show direct impact on the survival of patients in surgery alone group. Additionally, PD-L1 expression was found to be highly associated with hepatitis B viral load and the proportion of tumor-infiltrating lymphocytes in HCC patients. In conclusions, our study indicates that PD-L1 expression may reflect the presence of endogenous host immune response to tumor and serve as a biomarker for predicting survival benefits from adjuvant CIK cell immunotherapy in HCC patients.
Protein kinase CK2 alpha (CK2α), one isoform of the catalytic subunit of serine/threonine kinase CK2, has been indicated to participate in tumorigenesis of various malignancies. We conducted this study to investigate the biological significances of CK2α expression in hepatocellular carcinoma (HCC) development. Real-time quantitative polymerase and western blotting analyses revealed that CK2α expression was significantly increased at mRNA and protein levels in HCC tissues. Immunohistochemical analyses indicated that amplified expression of CK2α was highly correlated with poor prognosis. And functional analyses (cell proliferation and colony formation assays, cell migration and invasion assays, cell cycle and apoptosis assays) found that CK2α promoted cell proliferation, colony formation, migration and invasion, as well as inhibited apoptosis in hepatoma cell lines in vitro. CK2α-silenced resulted in significant apoptosis in cells that was demonstrated been associated with downregulation of expression of Bcl-2, p-AKT (ser473) and upregulation of expression of total P53, p-P53, Bax, caspase3 and cleaved-caspase3 in HCC cells. In addition, experiments with a mouse model revealed that the stimulative effect of CK2α on tumorigenesis in nude mice. Our results suggest that CK2α might play an oncogenic role in HCC, and therefore it could serve as a biomarker for prognostic and therapeutic applications in HCC.
Cytokine-induced killer (CIK) cells that are stimulated using mature dendritic cells (DCs), referred to as (DC-CIK cells) exhibit superior anti-tumor potency. Anti-programmed death-1 (PD-1) antibodies reinvigorate T cell-mediated antitumor immunity. This phase I study aimed to assess the safety and clinical activity of immunotherapy with PD-1 blockade (pembrolizumab)-activated autologous DC-CIK cells in patients with advanced solid tumors. Patients with selected types of advanced solid tumors received a single intravenous infusion of activated autologous DC-CIK cells weekly for the first month and every 2 weeks thereafter. The primary end points were safety and adverse event (AE) profiles. Antitumor responses, overall survival (OS), progression-free survival (PFS) and cytolytic activity were secondary end points. Treatment-related AEs occurred in 20/31 patients. Grade 3 or 4 toxicities, including fever and chills, were observed in two patients. All treatment-related AEs were reversible or controllable. The cytotoxicity of DC-CIK cells induced up-regulation of PD-L1 expression on autologous tumor cells. When activated using pembrolizumab , DC-CIK cells exerted superior antitumor properties and elevated IFN-γ secretion. Objective responses (complete or partial responses) were observed in 7 of the 31patients.These responses were durable, with 6 of 7 responses lasting more than 5 months. The overall disease control rate in the patients was 64.5%. At the time of this report, the median OS and PFS were 270 and 162 days, respectively. In conclusions, treatment with pembrolizumab-activated autologous DC-CIK cells was safe and exerted encouraging antitumor activity in advanced solid tumors. A larger phase II trial is warranted.
Background: Clinically, the median survival in patients with metastatic renal cell carcinoma (RCC) was only 6-12 months and a 5-year survival rate of less than 20%. Therefore, an in-depth study of the molecular mechanisms involved in RCC is of great significance for improving the survival of patients with advanced RCC. Acylglycerol kinase (AGK) is a newly discovered lipid kinase that has been reported to be a potent oncogene that may be involved in the regulation of malignant progression in a variety of tumours. However, the expression and biological characteristics of the AGK gene in RCC remain unclear. Methods: AGK expression was quantified by quantitative real-time PCR, Western blotting and immunohistochemistry in RCC cell lines and paired patient tissues. Kaplan-Meier method and Cox proportional hazards models were used to evaluate the prognostic value of AGK in human RCC tissue samples. Chi-squared test was performed to analyse the correlation between AGK expression and the clinicopathological features. Stable overexpression and knockdown of AGK in RCC cells was constructed with lentivirus. The oncogenic effects of AGK in human RCC progression were investigated using assays of colony formation, anchorage-independent growth, EdU assay, cell cycle analysis, wound-healing, trans-well analysis and xenograft tumour model. GSEA and KEGG analysis were conducted to detect the potential pathway of AGK involved in RCC. These results were further confirmed using the luciferase reporter assays, immunofluorescence and in vivo experiments. Results: AGK expression is significantly elevated in RCC and closely related to the malignant development and poor prognosis in RCC patients. By in vitro and in vivo experiments, AGK was shown to enhance the proliferation of RCC cells by promoting the transition from the G1 phase to the S phase in the cell cycle and to enhance the migration and invasion by promoting epithelial-mesenchymal transition. By activating the PI3K/AKT/GSK3β signalling pathway in RCC, AGK can increase nuclear accumulation of β-catenin, which further upregulated TCF/LEF transcription factor activity. Conclusions: AGK promotes the progression of RCC via activating the PI3K/AKT/GSK3β signalling pathway and might be a potential target for the further research of RCC.
Interleukin (IL)-17 has been reported to play a controversial role in tumor immunity. Our previous studies showed that infiltration of IL-17-producing cells in esophageal squamous cell carcinoma (ESCC) induced tumor protective immunity by recruiting CD8+T lymphocytes, natural killer (NK) cells, and B lymphocytes into the tumor microenvironment. However, the mechanism of IL-17 regulation of tumor-associated neutrophils remains elusive in ESCC. In this study, we therefore evaluated the accumulation of myeloperoxidase (MPO)+ neutrophils and its association with IL-17-producing cells within ESCC tumor nests. We also investigated the effects of IL-17 on the recruitment and antitumor activity of neutrophils. MPO+ neutrophil infiltration was found to predict a favorable prognosis in ESCC patients and was positively correlated with IL-17+ cell density. IL-17 stimulated ESCC tumor cells to release more of the CXC chemokines CXCL2 and CXCL3, which are involved in neutrophil migration. Furthermore, IL-17 potentiates the direct killing capability of neutrophils by enhancing the production of cytotoxic molecules, including reactive oxygen species (ROS), MPO, TNF-related apoptosis-inducing ligand (TRAIL), and IFN-γ. Experiments in mice suggested that IL-17 alone might not affect tumor progression in the tumor-bearing host, but IL-17 can inhibit tumor growth by promoting beneficial neutrophil infiltration and activation at tumor sites. As emerging evidence indicates that targeting tumor-associated neutrophils is a strategy for antitumor therapy, our findings reveal a positive contribution of IL-17 to the modulation of neutrophil-mediated antitumor immunity in ESCC. This study provides further understanding of the mechanisms that selectively regulate functional activities of neutrophils, which may be critical for developing new tumor immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.