Within the limits of this pilot study, it can be concluded that modSLA implants achieve a higher bone contact and stability at earlier time points when compared with SLA implants.
CaP cement is indeed effective to stimulate bone formation in the sinus elevation procedure. Nevertheless, additional improvements in the cement composition are required to allow final clinical utilization of the material.
-Four fluoroquinolones (pefloxacin, norfloxacin, ofloxacin and ciprofloxacin) were compared according to their biomechanical and histopathological effects on rat Achilles tendon. Wistar rats were divided into one untreated control and four treatment groups in parallel. Pefloxacin mesylate dihydrate (40 mg/kg), norfloxacin (40 mg/kg), ofloxacin (20 mg/kg) and ciprofloxacin (50 mg/kg) were administered by gavage twice daily for three consecutive weeks. 6 weeks after treatment, the test animals were euthanised and Achilles tendon specimens were collected. A computer monitored tensile testing machine was utilised for biomechanical testing. The mean elastic modulus of the control group was significantly higher than that of the norfloxacin and pefloxacin groups (p < 0.05 and p < 0.01, respectively). The mean yield force (YF) of the control group was significantly higher than those of ciprofloxacin, norfloxacin and pefloxacin groups (p < 0.001, p < 0.05 and p < 0.01, respectively). The mean ultimate tensile force (UTF) of the control group was significantly higher than of the ciprofloxacin, norfloxacin, and pefloxacin groups (p < 0.001, p < 0.05 and p < 0.01, respectively). Hyaline degeneration and fibre disarrangement were observed in the tendons of the ciprofloxacin, pefloxacin, and ofloxacin treated-groups, whereas myxomatous degeneration was observed only in the ciprofloxacin and pefloxacin groups. In conclusion, these findings in our rat model reveal significant deterioration of biomechanical parameters following fluoroquinolone exposure, and indicate significantly higher biomechanical toxicity for ciprofloxacin and pefloxacin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.