As a typical representative of dopants, organic functional dyes have demonstrated their significant roles in novel smart liquid crystal (LC) devices, and dye-doped LCs have also been a source of inspiration for scientists to design and fabricate stimuli-gated materials or devices for envisioned applications in a wide range of areas. In this review, the focus on dichroic dyes, fluorescent dyes, and photothermal dyes, and the recent progress of the LC devices employing these dyes as dopants are overviewed. The review highlights the developments of the novel LC devices doped with these dyes. The structures, designs, and applications of these devices are outlined. The underlying principles of dichroic dyes, fluorescent dyes, and photothermal dyes which are utilized as functional dopants in LC devices are first introduced. Subsequently, the novel developments of functional dye-doped LC devices in the application fields of smart windows, attenuators for augmented reality (AR) systems, color-changeable textiles, dichroic color filters, dual-mode circular polarizers, chirality detectors, optical limiters, switchable luminescent solar concentrators, multiple information encryption, anti-counterfeiting, photo-addressed transparent displays, circularly polarized luminescence, tunable lasers, and light-driven soft actuators are discussed. Finally, the challenge and the strategies for the future improvement of dye-doped LC devices are also discussed.
Soil erosion due to rainstorms is a serious problem in subtropical gardens in South China. Soil conservation and the restoration of degraded landscapes are important research topics at home and abroad. Because of the sluggish growth of plants under traditional cultivation techniques, they are incapable of effectively protecting the soil. Therefore, the rapid and high-quality soil conservation of subtropical landscapes remains an urgent problem to be overcome. The purpose of this study is to improve the red soil and ground environment for the growth of grasses and shrubs through high-performance ester materials. Our objective was to find a solution for the high impact of soil loss on subtropical landscapes. In this study, we used the ecological restoration of soil as the starting point and selected a typical subtropical garden in South China as the field test point. We carried out soil erosion resistance testing using high-performance ester materials. The anti-erosion abilities of slopes under various working conditions are discussed. During the growth period, the soil indexes were monitored for a long time, and the growth of grasses and shrubs was compared. The obtained monitoring data were analyzed with mathematical statistics. We found that the addition of high-performance ester materials significantly reduced soil loss by 52.60%. High-performance ester materials have a good hydrothermal regulation function, which can promote the germination and later growth of sloping plants. The decrease in ground internal density promotes the extension of plant roots. High-performance ester materials can improve soil permeability and activity and promote vegetation growth. In terms of turf thickness and overall growth as well as shrubs crown width and height, high-performance ester materials have a beneficial effect on promoting plant growth. Soil remediation using high-performance ester materials has good economic value, high water-holding capacity, adaptability, and convenience. In this study, we determined a solution for the high impact of soil loss on subtropical landscapes. The soil remediation of a subtropical garden using high-performance ester materials was successful. The practice of landscape soil remediation engineering presented in this paper can provide a reference for typical landscape soil remediation in subtropical zones.
Hippocampal neural stem cell (NSC) proliferation is known to decline with age, which is closely linked to learning and memory impairments. In the current study, we found that the expression level of miR‐181a‐5p was decreased in the hippocampal NSCs of aged mice and that exogenous overexpression of miR‐181a‐5p promoted NSC proliferation without affecting NSC differentiation into neurons and astrocytes. The mechanistic study revealed that phosphatase and tensin homolog (PTEN), a negative regulator of the AKT signaling pathway, was the target of miR‐181a‐5p and knockdown of PTEN could rescue the impairment of NSC proliferation caused by low miR‐181a‐5p levels. Moreover, overexpression of miR‐181a‐5p in the dentate gyrus enhanced the proliferation of NSCs and ameliorated learning and memory impairments in aged mice. Taken together, our findings indicated that miR‐181a‐5p played a functional role in NSC proliferation and aging‐related, hippocampus‐dependent learning and memory impairments.
Acute myocardial infarction (AMI) accompanied by cardiac remodeling still lacks effective treatment to date. Accumulated evidences suggest that exosomes from various sources play a cardioprotective and regenerative role in heart repair, but their effects and mechanisms remain intricate. Here, we found that intramyocardial delivery of plasma exosomes from neonatal mice (npEXO) could help to repair the adult heart in structure and function after AMI. In-depth proteome and single-cell transcriptome analyses suggested that npEXO ligands were majorly received by cardiac endothelial cells (ECs), and npEXO-mediated angiogenesis might serve as a pivotal reason to ameliorate the infarcted adult heart. We then innovatively constructed systematical communication networks among exosomal ligands and cardiac ECs and the final 48 ligand–receptor pairs contained 28 npEXO ligands (including the angiogenic factors, Clu and Hspg2), which mainly mediated the pro-angiogenic effect of npEXO by recognizing five cardiac EC receptors (Kdr, Scarb1, Cd36, etc.). Together, the proposed ligand–receptor network in our study might provide inspiration for rebuilding the vascular network and cardiac regeneration post-MI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.