SummaryThe adult CNS has poor ability to replace degenerated neurons following injury or disease. Recently, direct reprogramming of astrocytes into induced neurons has been proposed as an innovative strategy toward CNS repair. As a cell population that shows high diversity on physiological properties and functions depending on their spatiotemporal distribution, however, whether the astrocyte heterogeneity affect neuronal reprogramming is not clear. Here, we show that astrocytes derived from cortex, cerebellum, and spinal cord exhibit biological heterogeneity and possess distinct susceptibility to transcription factor-induced neuronal reprogramming. The heterogeneous expression level of NOTCH1 signaling in the different CNS regions-derived astrocytes is shown to be responsible for the neuronal reprogramming diversity. Taken together, our findings demonstrate that region-restricted astrocytes reveal different intrinsic limitation of the response to neuronal reprogramming.
Evidence indicates that neural stem cells (NSCs) can ameliorate cerebral ischemia in animal models. In this study, we investigated the mechanism underlying one of the neuroprotective effects of NSCs: tunneling nanotube (TNT) formation. We addressed whether the control of cell-to-cell communication processes between NSCs and brain microvascular endothelial cells (BMECs) and, particularly, the control of TNT formation could influence the rescue function of stem cells. In an attempt to mimic the cellular microenvironment in vitro, a co-culture system consisting of terminally differentiated BMECs from mice in a distressed state and NSCs was constructed. Additionally, engraftment experiments with infarcted mouse brains revealed that control of TNT formation influenced the effects of stem cell transplantation in vivo. In conclusion, our findings provide the first evidence that TNTs exist between NSCs and BMECs and that regulation of TNT formation alters cell function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.