The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva). The initial configuration and expected performance of the detector and associated systems, as established by test beam measurements and simulation studies, is described.
A measurement of the ratio of branching fractions of the decays B þ → K þ μ þ μ − and B þ → K þ e þ e − is presented. The proton-proton collision data used correspond to an integrated luminosity of 5.0 fb −1 recorded with the LHCb experiment at center-of-mass energies of 7, 8, and 13 TeV. For the dilepton mass-squared range 1.1 < q 2 < 6.0 GeV 2 =c 4 the ratio of branching fractions is measured to be R K ¼ 0.846 þ0.060 −0.054 þ0.016 −0.014 , where the first uncertainty is statistical and the second systematic. This is the most precise measurement of R K to date and is compatible with the standard model at the level of 2.5 standard deviations.
An angular analysis of the B 0 → K *0(→ K + π −)μ + μ − decay is presented. The dataset corresponds to an integrated luminosity of 3.0 fb−1 of pp collision data collected at the LHCb experiment. The complete angular information from the decay is used to determine CP-averaged observables and CP asymmetries, taking account of possible contamination from decays with the K + π − system in an S-wave configuration. The angular observables and their correlations are reported in bins of q 2, the invariant mass squared of the dimuon system. The observables are determined both from an unbinned maximum likelihood fit and by using the principal moments of the angular distribution. In addition, by fitting for q 2-dependent decay amplitudes in the region 1.1 < q 2 < 6.0 GeV2/c 4, the zero-crossing points of several angular observables are computed. A global fit is performed to the complete set of CP-averaged observables obtained from the maximum likelihood fit. This fit indicates differences with predictions based on the Standard Model at the level of 3.4 standard deviations. These differences could be explained by contributions from physics beyond the Standard Model, or by an unexpectedly large hadronic effect that is not accounted for in the Standard Model predictions
The isospin asymmetries of B → Kµ + µ − and B → K * µ + µ − decays and the partial branching fractions of the B 0 → K 0 µ + µ − , B + → K + µ + µ − and B + → K * + µ + µ − decays are measured as functions of the dimuon mass squared, q 2 . The data used correspond to an integrated luminosity of 3 fb −1 from proton-proton collisions collected with the LHCb detector at centre-of-mass energies of 7 TeV and 8 TeV in 2011 and 2012, respectively. The isospin asymmetries are both consistent with the Standard Model expectations. The three measured branching fractions favour lower values than their respective theoretical predictions, however they are all individually consistent with the Standard Model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.