Genome alteration signatures reflect recurring patterns caused by distinct endogenous or exogenous mutational events during the evolution of cancer. Signatures of single base substitution (SBS) have been extensively studied in different types of cancer. Copy number alterations are important drivers for the progression of multiple cancer. However, practical tools for studying the signatures of copy number alterations are still lacking. Here, a user-friendly open source bioinformatics tool “sigminer” has been constructed for copy number signature extraction, analysis and visualization. This tool has been applied in prostate cancer (PC), which is particularly driven by complex genome alterations. Five copy number signatures are identified from human PC genome with this tool. The underlying mutational processes for each copy number signature have been illustrated. Sample clustering based on copy number signature exposure reveals considerable heterogeneity of PC, and copy number signatures show improved PC clinical outcome association when compared with SBS signatures. This copy number signature analysis in PC provides distinct insight into the etiology of PC, and potential biomarkers for PC stratification and prognosis.
Summary
UCSC Xena platform provides huge amounts of processed cancer omics data from large cancer research projects (e.g. TCGA, CCLE and PCAWG) or individual research groups and enables unprecedented research opportunities. However, a graphical user interface (GUI) based tool for interactively analyzing UCSC Xena data and generating elegant plots is still lacking, especially for cancer researchers and clinicians with limited programming experience. Here, we present UCSCXenaShiny, an R Shiny package for quickly searching, downloading, exploring, analyzing and visualizing data from UCSC Xena data hubs. This tool could effectively promote the practical use of public data, and can serve as an important complement to the current Xena genomics explorer.
Availability
UCSCXenaShiny is an open source R package under GPLv3 license and it is freely available at https://github.com/openbiox/UCSCXenaShiny or https://cran.r-project.org/package=UCSCXenaShiny. The docker image is available at https://hub.docker.com/r/shixiangwang/ucscxenashiny.
Supplementary information
Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.