Synthetic high-density lipoprotein (sHDL) nanoparticles composed of apolipoprotein A-I mimetic peptide and phospholipids have been shown to reduce atherosclerosis in animal models. Cholesterol is mobilized from atheroma macrophages by sHDL into the blood compartment and delivered to the liver for elimination. Historically, sHDL drug discovery efforts were focused on optimizing peptide sequences for interaction with cholesterol cellular transporters rather than understanding how both sHDL components, peptide and lipid, influence its pharmacokinetic and pharmacodynamic profiles. We designed two sets of sHDL having either identical phospholipid but variable peptide sequences with different plasma stability or identical peptide and phospholipids with variable fatty acid chain length and saturation. We found that sHDL prepared with proteolytically stable 22A-P peptide had 2-fold longer circulation half-time relative to the less stable 22A peptide. Yet, longer half-life did not translate into any improvement in cholesterol mobilization. In contrast, sHDL with variable phospholipid compositions showed significant differences in phospholipid PK, with distearoyl phosphatidylcholinebased sHDL demonstrating the longest half-life of 6.0 hours relative to 1.0 hour for palmitoyl-oleoyl phosphatidylcholinebased sHDL. This increase in half-life corresponded to an approx. 6.5-fold increase in the area under the curve for the mobilized cholesterol. Therefore, the phospholipid component in sHDL plays a major role in cholesterol mobilization in vivo and should not be overlooked in the design of future sHDL. SIGNIFICANCE STATEMENTThe phospholipid composition in sHDL plays a critical role in determining half-life and cholesterol mobilization in vivo.
Dangguiliuhuang decoction (DGLHD) is a traditional Chinese medicine (TCM) formula, which mainly consists of angelica, radix rehmanniae, radix rehmanniae praeparata, scutellaria baicalensis, coptis chinensis, astragalus membranaceus, and golden cypress, and used for the treatment of diabetes and some autoimmune diseases. In this study, we explored the potential mechanism of DGLHD against insulin resistance and fatty liver in vivo and in vitro. Our data revealed that DGLHD normalized glucose and insulin level, increased the expression of adiponectin, diminished fat accumulation and lipogenesis, and promoted glucose uptake. Metabolomic analysis also demonstrated that DGLHD decreased isoleucine, adenosine, and cholesterol, increased glutamine levels in liver and visceral adipose tissue (VAT) of ob/ob mice. Importantly, DGLHD promoted the shift of pro-inflammatory to anti-inflammatory cytokines, suppressed T lymphocytes proliferation, and enhanced regulatory T cells (Tregs) differentiation. DGLHD also inhibited dendritic cells (DCs) maturation, attenuated DCs-stimulated T cells proliferation and secretion of IL-12p70 cytokine from DCs, and promoted the interaction of DCs with Tregs. Further studies indicated that the changed PI3K/Akt signaling pathway and elevated PPAR-γ expression were not only observed with the ameliorated glucose and lipid metabolism in adipocytes and hepatocytes, but also exhibited in DCs and T cells by DGLHD. Collectively, our results suggest that DGLHD exerts anti-insulin resistant and antisteatotic effects by improving abnormal immune and metabolic homeostasis. And DGLHD may be a novel approach to the treatment of obesity-related insulin resistance and hepatic steatosis.
Purpose: Mutant isocitrate dehydrogenase 1 (mIDH1) alters the epigenetic regulation of chromatin, leading to a hypermethylation phenotype in adult glioma. This work focuses on identifying gene targets epigenetically dysregulated by mIDH1 to confer therapeutic resistance to ionizing radiation (IR). Experimental Design: We evaluated changes in the transcriptome and epigenome in a radioresistant mIDH1 patient-derived glioma cell culture (GCC) following treatment with an mIDH1 specific inhibitor AGI-5198. We identified Zinc Finger MYND-Type Containing 8 (ZMYND8) as potential target of mIDH1 reprogramming. We suppressed ZMYND8 expression by shRNA knockdown and genetic knockout (KO) in mIDH1 glioma cells then assessed cellular viability to IR. We assessed the sensitivity of mIDH1 GCCS to pharmacological inhibition of ZMYND8-interacting partners: HDAC, BRD4, and PARP. Results: Inhibition of mIDH1 lead to an upregulation of gene networks involved in replication stress. We found that the expression of ZMYND8, a regulator of DNA damage response was decreased in three patient-derived mIDH1 GCCs after treatment with AGI-5198. Knockdown of ZMYND8 expression sensitized mIDH1 GCCs to radiotherapy marked by decreased cellular viability. Following IR, mIDH1 glioma cells with ZMYND8 knockout (KO) exhibit significant phosphorylation of ATM and sustained γH2AX activation. ZMYND8 KO mIDH1 GCCs were further responsive to IR when treated with either BRD4 or HDAC inhibitors. PARP inhibition further enhanced the efficacy of radiotherapy in ZMYND8 KO mIDH1 glioma cells. Conclusions: These findings indicate the impact of ZMYND8 in the maintenance of genomic integrity and repair of IR-induced DNA damage in mIDH1 glioma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.