Abstract. A chemistry-transport model (CTM) intercomparison experiment (TransCom-CH4) has been designed to investigate the roles of surface emissions, transport and chemical loss in simulating the global methane distribution. Model simulations were conducted using twelve models and four model variants and results were archived for the period of 1990–2007. All but one model transports were driven by reanalysis products from 3 different meteorological agencies. The transport and removal of CH4 in six different emission scenarios were simulated, with net global emissions of 513 ± 9 and 514 ± 14 Tg CH4 yr−1 for the 1990s and 2000s, respectively. Additionally, sulfur hexafluoride (SF6) was simulated to check the interhemispheric transport, radon (222Rn) to check the subgrid scale transport, and methyl chloroform (CH3CCl3) to check the chemical removal by the tropospheric hydroxyl radical (OH). The results are compared to monthly or annual mean time series of CH4, SF6 and CH3CCl3 measurements from 8 selected background sites, and to satellite observations of CH4 in the upper troposphere and stratosphere. Most models adequately capture the vertical gradients in the stratosphere, the average long-term trends, seasonal cycles, interannual variations (IAVs) and interhemispheric (IH) gradients at the surface sites for SF6, CH3CCl3 and CH4. The vertical gradients of all tracers between the surface and the upper troposphere are consistent within the models, revealing vertical transport differences between models. An average IH exchange time of 1.39 ± 0.18 yr is derived from SF6 time series. Sensitivity simulations suggest that the estimated trends in exchange time, over the period of 1996–2007, are caused by a change of SF6 emissions towards the tropics. Using six sets of emission scenarios, we show that the decadal average CH4 growth rate likely reached equilibrium in the early 2000s due to the flattening of anthropogenic emission growth since the late 1990s. Up to 60% of the IAVs in the observed CH4 concentrations can be explained by accounting for the IAVs in emissions, from biomass burning and wetlands, as well as meteorology in the forward models. The modeled CH4 budget is shown to depend strongly on the troposphere-stratosphere exchange rate and thus on the model's vertical grid structure and circulation in the lower stratosphere. The 15-model median CH4 and CH3CCl3 atmospheric lifetimes are estimated to be 9.99 ± 0.08 and 4.61 ± 0.13 yr, respectively, with little IAV due to transport and temperature.
Abstract. We present the organization, instrumentation, datasets, data interpretation, modeling, and accomplishments of the multinational global atmospheric measurement program AGAGE (Advanced Global Atmospheric Gases Experiment). AGAGE is distinguished by its capability to measure globally, at high frequency, and at multiple sites all the important species in the Montreal Protocol and all the important non-carbon-dioxide (non-CO2) gases assessed by the Intergovernmental Panel on Climate Change (CO2 is also measured at several sites). The scientific objectives of AGAGE are important in furthering our understanding of global chemical and climatic phenomena. They are the following: (1) to accurately measure the temporal and spatial distributions of anthropogenic gases that contribute the majority of reactive halogen to the stratosphere and/or are strong infrared absorbers (chlorocarbons, chlorofluorocarbons – CFCs, bromocarbons, hydrochlorofluorocarbons – HCFCs, hydrofluorocarbons – HFCs and polyfluorinated compounds (perfluorocarbons – PFCs), nitrogen trifluoride – NF3, sulfuryl fluoride – SO2F2, and sulfur hexafluoride – SF6) and use these measurements to determine the global rates of their emission and/or destruction (i.e., lifetimes); (2) to accurately measure the global distributions and temporal behaviors and determine the sources and sinks of non-CO2 biogenic–anthropogenic gases important to climate change and/or ozone depletion (methane – CH4, nitrous oxide – N2O, carbon monoxide – CO, molecular hydrogen – H2, methyl chloride – CH3Cl, and methyl bromide – CH3Br); (3) to identify new long-lived greenhouse and ozone-depleting gases (e.g., SO2F2, NF3, heavy PFCs (C4F10, C5F12, C6F14, C7F16, and C8F18) and hydrofluoroolefins (HFOs; e.g., CH2 = CFCF3) have been identified in AGAGE), initiate the real-time monitoring of these new gases, and reconstruct their past histories from AGAGE, air archive, and firn air measurements; (4) to determine the average concentrations and trends of tropospheric hydroxyl radicals (OH) from the rates of destruction of atmospheric trichloroethane (CH3CCl3), HFCs, and HCFCs and estimates of their emissions; (5) to determine from atmospheric observations and estimates of their destruction rates the magnitudes and distributions by region of surface sources and sinks of all measured gases; (6) to provide accurate data on the global accumulation of many of these trace gases that are used to test the synoptic-, regional-, and global-scale circulations predicted by three-dimensional models; and (7) to provide global and regional measurements of methane, carbon monoxide, and molecular hydrogen and estimates of hydroxyl levels to test primary atmospheric oxidation pathways at midlatitudes and the tropics. Network Information and Data Repository: http://agage.mit.edu/data or http://cdiac.ess-dive.lbl.gov/ndps/alegage.html (https://doi.org/10.3334/CDIAC/atg.db1001).
A likely important feature of the poorly understood aerosol‐cloud interactions over the Southern Ocean (SO) is the dominant role of sea spray aerosol, versus terrestrial aerosol. Ice nucleating particles (INPs), or particles required for heterogeneous ice nucleation, present over the SO have not been studied in several decades. In this study, boundary layer aerosol properties and immersion freezing INP number concentrations (nINPs) were measured during a ship campaign that occurred south of Australia (down to 53°S) in March–April 2016. Ocean surface chlorophyll a concentrations ranged from 0.11 to 1.77 mg/m3, and nINPs were a factor of 100 lower than historical surveys, ranging from 0.38 to 4.6 m−3 at −20 °C. The INP population included organic heat‐stable material, with contributions from heat‐labile material. Lower INP source potentials of SO seawater samples compared to Arctic seawater were consistent with lower ice nucleating site densities in this study compared to north Atlantic air masses.
A transport model intercomparison experiment (TransCom-CH4) has been designed to investigate the roles of surface emissions, transport and chemical loss in simulating the global methane distribution. Model simulations were conducted using twelve models and four model variants and results were archived for the period of 1990–2007. The transport and removal of six CH4 tracers with different emission scenarios were simulated, with net global emissions of 513 ± 9 and 514 ± 14 Tg CH4 yr−1 for the 1990s and 2000s, respectively. Additionally, sulfur hexafluoride (SF6) was simulated to check the interhemispheric transport, radon (222Rn) to check the subgrid scale transport, and methyl chloroform (CH3CCl3) to check the chemical removal by the tropospheric hydroxyl radical (OH). The results are compared to monthly or annual mean time series of CH4, SF6 and CH3CCl3 measurements from 8 selected background sites, and to satellite observations of CH4 in the upper troposphere and stratosphere. Most models adequately capture the vertical gradients in the stratosphere, the average long-term trends, seasonal cycles, interannual variations and interhemispheric gradients at the surface sites for SF6, CH3CCl3 and CH4. The vertical gradients of all tracers between the surface and the upper troposphere are consistent within the models, revealing vertical transport differences between models. We find that the interhemispheric exchange rate (1.39 ± 0.18 yr) derived from SF6 is faster by about 11 % in the 2000s compared to the 1990s. Up to 60 % of the interannual variations in the forward CH4 simulations can be explained by accounting for the interannual variations in emissions from biomass burning and wetlands. We also show that the decadal average growth rate likely reached equilibrium in the early 2000s due to the flattening of anthropogenic emission growth since the late 1990s. The modeled CH4 budget is shown to depend strongly on the troposphere-stratosphere exchange rate and thus to the model's vertical grid structure and circulation in the lower stratosphere. The 15-model median CH4 and CH3CCl3 atmospheric lifetimes are estimated to be 9.99 ± 0.08 and 4.61 ± 0.13 yr, respectively, with little interannual variability due to transport and temperature as noted by the ± 1 σ
Abstract. Climate change mitigation efforts require information on the current greenhouse gas atmospheric concentrations and their sources and sinks. Carbon dioxide (CO2) is the most abundant anthropogenic greenhouse gas. Its variability in the atmosphere is modulated by the synergy between weather and CO2 surface fluxes, often referred to as CO2 weather. It is interpreted with the help of global or regional numerical transport models, with horizontal resolutions ranging from a few hundreds of kilometres to a few kilometres. Changes in the model horizontal resolution affect not only atmospheric transport but also the representation of topography and surface CO2 fluxes. This paper assesses the impact of horizontal resolution on the simulated atmospheric CO2 variability with a numerical weather prediction model. The simulations are performed using the Copernicus Atmosphere Monitoring Service (CAMS) CO2 forecasting system at different resolutions from 9 to 80 km and are evaluated using in situ atmospheric surface measurements and atmospheric column-mean observations of CO2, as well as radiosonde and SYNOP observations of the winds. The results indicate that both diurnal and day-to-day variability of atmospheric CO2 are generally better represented at high resolution, as shown by a reduction in the errors in simulated wind and CO2. Mountain stations display the largest improvements at high resolution as they directly benefit from the more realistic orography. In addition, the CO2 spatial gradients are generally improved with increasing resolution for both stations near the surface and those observing the total column, as the overall inter-station error is also reduced in magnitude. However, close to emission hotspots, the high resolution can also lead to a deterioration of the simulation skill, highlighting uncertainties in the high-resolution fluxes that are more diffuse at lower resolutions. We conclude that increasing horizontal resolution matters for modelling CO2 weather because it has the potential to bring together improvements in the surface representation of both winds and CO2 fluxes, as well as an expected reduction in numerical errors of transport. Modelling applications like atmospheric inversion systems to estimate surface fluxes will only be able to benefit fully from upgrades in horizontal resolution if the topography, winds and prior flux distribution are also upgraded accordingly. It is clear from the results that an additional increase in resolution might reduce errors even further. However, the horizontal resolution sensitivity tests indicate that the change in the CO2 and wind modelling error with resolution is not linear, making it difficult to quantify the improvement beyond the tested resolutions. Finally, we show that the high-resolution simulations are useful for the assessment of the small-scale variability of CO2 which cannot be represented in coarser-resolution models. These representativeness errors need to be considered when assimilating in situ data and high-resolution satellite data such as Greenhouse gases Observing Satellite (GOSAT), Orbiting Carbon Observatory-2 (OCO-2), the Chinese Carbon Dioxide Observation Satellite Mission (TanSat) and future missions such as the Geostationary Carbon Observatory (GeoCarb) and the Sentinel satellite constellation for CO2. For these reasons, the high-resolution CO2 simulations provided by the CAMS in real time can be useful to estimate such small-scale variability in real time, as well as providing boundary conditions for regional modelling studies and supporting field experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.