Background: The propensity for off-target activity of Streptococcus pyogenes Cas9 (SpCas9) has been considerably decreased by rationally engineered variants with increased fidelity (eSpCas9; SpCas9-HF1). However, a subset of targets still generate considerable off-target effects. To deal specifically with these targets, we generated new "Highly enhanced Fidelity" nuclease variants (HeFSpCas9s) containing mutations from both eSpCas9 and SpCas9-HF1 and examined these improved nuclease variants side by side to decipher the factors that affect their specificities and to determine the optimal nuclease for applications sensitive to off-target effects. Results: These three increased-fidelity nucleases can routinely be used only with perfectly matching 20-nucleotide-long spacers, a matching 5′ G extension being more detrimental to their activities than a mismatching one. HeFSpCas9 exhibit substantially improved specificity for those targets for which eSpCas9 and SpCas9-HF1 have higher off-target propensity. The targets can also be ranked by their cleavability and off-target effects manifested by the increased fidelity nucleases. Furthermore, we show that the mutations in these variants may diminish the cleavage, but not the DNA-binding, of SpCas9s.
The widespread use of Cas12a (formerly Cpf1) nucleases for genome engineering is limited by their requirement for a rather long TTTV protospacer adjacent motif (PAM) sequence. Here we have aimed to loosen these PAM constraints and have generated new PAM mutant variants of the four Cas12a orthologs that are active in mammalian and plant cells, by combining the mutations of their corresponding RR and RVR variants with altered PAM specificities. LbCas12a-RVRR showing the highest activity was selected for an in-depth characterization of its PAM preferences in mammalian cells, using a plasmid-based assay. The consensus PAM sequence of LbCas12a-RVRR resembles a TNTN motif, but also includes TACV, TTCV CTCV and CCCV. The D156R mutation in improved LbCas12a (impLbCas12a) was found to further increase the activity of that variant in a PAM-dependent manner. Due to the overlapping but still different PAM preferences of impLbCas12a and the recently reported enAsCas12a variant, they complement each other to provide increased efficiency for genome editing and transcriptome modulating applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.