Although astrocytes presumably participate in maintaining the immune privilege of the central nervous system (CNS), the mechanisms behind their immunoregulatory properties are still largely undefined. In this study, we describe the development of regulatory T cells upon contact with astrocytes. Rat T cells pre-incubated with astrocytes completely lost the ability to proliferate in response to mitogenic stimuli. The cells were blocked in G0/G1 phase of the cell cycle, expressed less IL-2R, and produced significantly lower amounts of interferon-gamma (IFN-gamma), but not interleukin-2 (IL-2), IL-10, or tumor necrosis factor (TNF). These anergic cells completely prevented mitogen-induced growth of normal T lymphocytes, as well as CNS antigen-driven proliferation of autoreactive T cells. The suppressive activity resided in both CD4+ and CD8+ T-cell compartments. Heat-sensitive soluble T-cell factors, not including transforming growth factor-beta (TGF-beta) or IL-10, were solely responsible for the observed suppression, as well as for the transfer of suppressive activity to normal T cells. The administration of astrocyte-induced regulatory T cells markedly alleviated CNS inflammation and clinical symptoms of CNS autoimmunity in rats with experimental allergic encephalomyelitis. Finally, the cells with suppressive properties were readily generated from human lymphocytes after contact with astrocytes. Taken together, these data indicate that astrocyte-induced regulatory T cells might represent an important mechanism for self-limitation of excessive inflammation in the brain.
Astrocytes play important roles in the complex and as yet not very well understood net of interactions among resident and infiltrating cells during central nervous system (CNS) inflammation. In such an intricate network, cytokines represent an essential means for intercellular communication, and astrocytes are able to affect their generation and/or release. Among various cytokines produced by infiltrating cells, interferon (IFN)-gamma and interleukin (IL)-17 are the focus of this research, because they are pivotal cytokines of helper T-cell type 1 (Th1) and helper T-cell type 17 (Th17), respectively. Importantly, both Th1 and Th17 cells, as well as their cytokines, have been shown to be of importance for the pathogenesis of experimental autoimmune encephalomyelitis (EAE), an animal model of a prototypical CNS disease with inflammatory pathogenesis, multiple sclerosis. Therefore, the influence of astrocytes on the generation of IFN-gamma and IL-17 in concanavalin A- and myelin basic protein-stimulated lymph node cells of healthy rats and rats with developing EAE, respectively, was investigated in vitro. Astrocytes up-regulated IL-17 and IFN-gamma gene expression and protein synthesis in T cells, which coincided with astrocytes' ability to express IL-23 subunit p19 and common IL-12/IL-23 subunit p40 but not IL-12 subunit p35 in the co-cultivations. These results suggest one more way in which astrocytes could contribute to the complex interactions during CNS inflammation.
Albino Oxford (AO) rats, unlike Dark Agouti (DA) rats are resistant to the induction of experimental autoimmune encephalomyelitis (EAE). The reason for the resistance could be some restraining mechanism preventing auto-aggressive cell activation at the level of draining lymph nodes (DLN) during the induction phase of the disease. Such a mechanism could be anti-proliferative action of nitric oxide (NO), which has already been shown of importance for the resistance of several rat strains to the induction of the disease. Importantly, number of AO DLN cells (DLNC) is markedly lower and with lower proliferative response to myelin basic protein (MBP) ex vivo in comparison to DA DLNC in the inductive phase of EAE, thus implying that in AO rats DLNC do not proliferate as extensively as in DA rats. We show that AO rats do not produce larger quantities of NO than DA rats after immunization. Further, DLNC of immunized AO rats have significantly lower mRNA expression and synthesis of interferon (IFN)-gamma and interleukin (IL)-17 compared to DLNC of DA rats. Collectively, these results suggest that there is a substantial difference between EAE-resistant AO rats and EAE-prone DA rats in the initiation of autoimmune response. This difference seems to be independent of anti-proliferative actions of NO, but correlates with impaired IL-17 production in AO rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.