Background To evaluate the performance of a Deep Learning Image Reconstruction (DLIR) algorithm in pediatric head CT for improving image quality and lesion detection with 0.625 mm thin-slice images. Methods Low-dose axial head CT scans of 50 children with 120 kV, 0.8 s rotation and age-dependent 150–220 mA tube current were selected. Images were reconstructed at 5 mm and 0.625 mm slice thickness using Filtered back projection (FBP), Adaptive statistical iterative reconstruction-v at 50% strength (50%ASIR-V) (as reference standard), 100%ASIR-V and DLIR-high (DL-H). The CT attenuation and standard deviation values of the gray and white matters in the basal ganglia were measured. The clarity of sulci/cisterns, boundary between white and gray matters, and overall image quality was subjectively evaluated. The number of lesions in each reconstruction group was counted. Results The 5 mm FBP, 50%ASIR-V, 100%ASIR-V and DL-H images had a subjective score of 2.25 ± 0.44, 3.05 ± 0.23, 2.87 ± 0.39 and 3.64 ± 0.49 in a 5-point scale, respectively with DL-H having the lowest image noise of white matter at 2.00 ± 0.34 HU; For the 0.625 mm images, only DL-H images met the diagnostic requirement. The 0.625 mm DL-H images had similar image noise (3.11 ± 0.58 HU) of the white matter and overall image quality score (3.04 ± 0.33) as the 5 mm 50% ASIR-V images (3.16 ± 0.60 HU and 3.05 ± 0.23). Sixty-five lesions were recognized in 5 mm 50%ASIR-V images and 69 were detected in 0.625 mm DL-H images. Conclusion DL-H improves the head CT image quality for children compared with ASIR-V images. The 0.625 mm DL-H images improve lesion detection and produce similar image noise as the 5 mm 50%ASIR-V images, indicating a potential 85% dose reduction if current image quality and slice thickness are desired.
Background: Chest CT angiography (CTA) is a common clinical examination technique for children.Iterative reconstruction algorithms are often used to reduce image noise but encounter limitations under low dose conditions. Deep learning-based image reconstruction algorithms have been developed to overcome these limitations. We assessed the quantitative and qualitative image quality of thin-slice chest CTA in children acquired with low radiation dose and contrast volume by using a deep learning image reconstruction (DLIR) algorithm.Methods: A total of 33 children underwent chest CTA with 70 kVp and automatic tube current modulation for noise indices of 11-15 based on their age and contrast volume of 0.8-1.2 mL/kg. Images were reconstructed with 50% and 100% adaptive statistical iterative reconstruction-V (ASIR-V) and highsetting DLIR (DLIR-H) at 0.625 mm slice thickness. Two radiologists evaluated images in consensus for overall image noise, artery margin, and artery contrast separately on a 5-point scale (5, excellent; 4, good; 3, acceptable; 2, sub-acceptable, and 1, not acceptable). The CT value and image noise of the descending aorta and back muscle were measured. Radiation dose and contrast volume was recorded. Results:The volume CT dose index, dose length product, and contrast volume were 1.37±0.29 mGy, 35.43±10.59 mGy•cm, and 25.43±13.32 mL, respectively. The image noises (in HU) of the aorta with DLIR-H (19.24±5.77) and 100% ASIR-V (20.45±6.93) were not significantly different (P>0.05) and were substantially lower than 50% ASIR-V (29.45±7.59) (P<0.001). The 100% ASIR-V images had oversmoothed artery margins, but only the DLIR-H images provided acceptable scores on all 3 aspects of the qualitative image quality evaluation.Conclusions: It is feasible to improve the image quality of a low radiation dose and contrast volume chest CTA in children using the high-setting DLIR algorithm.
Background: Iterative reconstruction algorithms are often used to reduce image noise in low-dose coronary computed tomography angiography (CCTA) but encounter limitations. The newly introduced deep learning image reconstruction (DLIR) algorithm may provide new opportunities. We assessed the image quality and diagnostic performance of DLIR in low radiation dose and contrast medium dose CCTA of pediatric patients with 70 kVp and a shortened injection protocol.Methods: This was a prospective study. A total of 27 consecutive arrhythmic pediatric patients were enrolled in the study group and underwent CCTA using a prospective ECG-triggered single-beat protocol: tube voltage 70 kVp, automatic tube current modulation for a noise index (NI) of 22, and contrast dose of 0.4-0.6 mL/kg. Images were reconstructed with DLIR. They were compared with 27 matched patients in the control group scanned with 80 kVp, a lower NI setting (NI =19), and a higher contrast dose (0.8-1.2 mL/kg).The images in the control group were reconstructed using the adaptive statistical iterative reconstruction (ASIR-V) algorithm. The image contrast, image quality, and diagnostic confidence were assessed by 2 experienced radiologists using a 5-point scale (1: nondiagnostic and 5: excellent). The CT value and standard deviation of the aorta and perivascular tissue were measured, and the contrast-to-noise ratio (CNR) for the aorta was calculated. The contrast medium and radiation doses were compared. Results: The study and control groups had similar image contrast scores (4.75±0.57 vs. 4.78±0.42), image quality scores (3.67±0.47 vs. 3.44±0.51), and diagnostic confidence (4.74±0.44 vs. 4.74±0.45) (all P>0.05). There was an adequate enhancement in the aorta (614.74±127.73 vs. 705.89±111.20 HU) and similar CNR (20.34±4.64 vs. 20.99±4.14) in both groups. The image noise of the study group was lower in the aorta (30.61±3.88 vs. 34.77±3.49) and similar in perivascular tissue (27.66±6.24 vs. 27.55±3.33) compared with the control group. The study group reduced the total contrast medium dose by 53% to 15.07±3.68 ml and radiation dose by 36% to 0.57±0.31 mSv. Conclusions:The DLIR algorithm in CCTA for children using 70 kVp tube voltage with a shortened contrast medium injection protocol maintains image quality and diagnostic confidence while significantly reducing contrast medium dose and radiation dose compared with the use of the conventional CCTA protocol.
BACKGROUND: The inflammatory indexes of children with Takayasu arteritis (TAK) usually tend to be normal immediately after treatment, therefore, CT angiography (CTA) has become an important method to evaluate the status of TAK and sometime is even more sensitive than laboratory test results. OBJECTIVE: To evaluate image quality improvement in CTA of children diagnosed with TAK using a deep learning image reconstruction (DLIR) in comparison to other image reconstruction algorithms. METHODS: hirty-two TAK patients (9.14±4.51 years old) underwent neck, chest and abdominal CTA using 100 kVp were enrolled. Images were reconstructed at 0.625 mm slice thickness using Filtered Back-Projection (FBP), 50%adaptive statistical iterative reconstruction-V (ASIR-V), 100%ASIR-V and DLIR with high setting (DLIR-H). CT number and standard deviation (SD) of the descending aorta and back muscle were measured and contrast-to-noise ratio (CNR) for aorta was calculated. The vessel visualization, overall image noise and diagnostic confidence were evaluated using a 5-point scale (5, excellent; 3, acceptable) by 2 observers. RESULTS: There was no significant difference in CT number across images reconstructed using different algorithms. Image noise values (in HU) were 31.36±6.01, 24.96±4.69, 18.46±3.91 and 15.58±3.65, and CNR values for aorta were 11.93±2.12, 15.66±2.37, 22.54±3.34 and 24.02±4.55 using FBP, 50%ASIR-V, 100%ASIR-V and DLIR-H, respectively. The 100%ASIR-V and DLIR-H images had similar noise and CNR (all P > 0.05), and both had lower noise and higher CNR than FBP and 50%ASIR-V images (all P < 0.05). The subjective evaluation suggested that all images were diagnostic for large arteries, however, only 50%ASIR-V and DLIR-H met the diagnostic requirement for small arteries (3.03±0.18 and 3.53±0.51). CONCLUSION: DLIR-H improves CTA image quality and diagnostic confidence for TAK patients compared with 50%ASIR-V, and best balances image noise and spatial resolution compared with 100%ASIR-V.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.