Multifunctional electronic textiles (E-textiles) with embedded electric circuits hold great application prospects for future wearable electronics. However, most E-textiles still have critical challenges, including air permeability, satisfactory washability, and mass fabrication. In this work, we fabricate a washable E-textile that addresses all of the concerns and shows its application as a self-powered triboelectric gesture textile for intelligent human-machine interfacing. Utilizing conductive carbon nanotubes (CNTs) and screen-printing technology, this kind of E-textile embraces high conductivity (0.2 kΩ/sq), high air permeability (88.2 mm/s), and can be manufactured on common fabric at large scales. Due to the advantage of the interaction between the CNTs and the fabrics, the electrode shows excellent stability under harsh mechanical deformation and even after being washed. Moreover, based on a single-electrode mode triboelectric nanogenerator and electrode pattern design, our E-textile exhibits highly sensitive touch/gesture sensing performance and has potential applications for human-machine interfacing.
In recent years, skin‐like pressure sensors with high sensitivity and excellent flexibility are widely demonstrated for electronic skins. However, most of the reported skin‐like pressure sensors are still based on airtight films, resulting in limited air permeability. Herein, cost‐effective and capable processes of large‐scale production are reported for lightweight and breathable pressure sensors based on nanofiber membranes (NM). The pressure sensor is composed of a layer‐by‐layer structure of poly(vinylidene fluoride) NM for substrates, silver nanowires for electrodes, and thermoplastic polyurethane NM for the dielectric layer through screen printing and ultrasonic bonding techniques. Benefiting from the high porosity of NM, the capacitive pressure sensor possesses unique performance, including a superior sensitivity of 4.2 kPa−1, a fast response time (<26 ms), an ultralow detection limit (1.6 Pa), and excellent breathability (Gurley value = 17.3 s/100 mL). Furthermore, the pressure sensor is not only applicable to monitor human physiological signals, but also to detect spatial pressure distribution. These results indicate that the breathable and screen‐print pressure sensor is promising for electronic skins with air permeability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.