To modulate T-cell function for cancer therapy, one challenge is to selectively attenuate regulatory but not conventional CD4 T-cell subsets [regulatory T cell (Treg) and conventional T cell (Tconv)]. In this study, we show how a functional dichotomy in Class IA PI3K isoforms in these two subsets of CD4 T cells can be exploited to target Treg while leaving Tconv intact. Studies employing isoform-specific PI3K inhibitors and a PI3Kδ-deficient mouse strain revealed that PI3Kα and PI3Kβ were functionally redundant with PI3Kδ in Tconv. Conversely, PI3Kδ was functionally critical in Treg, acting there to control T-cell receptor signaling, cell proliferation, and survival. Notably, in a murine model of lung cancer, coadministration of a PI3Kδ-specific inhibitor with a tumor-specific vaccine decreased numbers of suppressive Treg and increased numbers of vaccine-induced CD8 T cells within the tumor microenvironment, eliciting potent antitumor efficacy. Overall, our results offer a mechanistic rationale to employ PI3Kδ inhibitors to selectively target Treg and improve cancer immunotherapy. .
Inhibition of specific Akt isoforms in CD8+ T cells promotes favored differentiation into memory versus effector cells, the former of which are superior in mediating anti-tumor immunity. In this study, we investigated the role of upstream PI3K isoforms in CD8+ T cell differentiation and assessed the potential use of PI3K isoform-specific inhibitors to favorably condition CD8+ T cells for adoptive cell therapy. The phenotype and proliferative ability of tumor antigen specific CD8+ T cells was assessed in the presence of PI3K-α, -β, or -δ inhibitors.Inhibition of PI3K-δ, but not PI3K-α or PI3K-β, delayed terminal differentiation of CD8+ T cells and maintained the memory phenotype, thus enhancing their proliferative ability and survival while maintaining their cytokine and granzyme B production ability. This effect was preserved in vivo after of ex vivo PI3K-δ inhibition in CD8+ T cells destined for adoptive transfer, enhancing their survival and also the anti-tumor therapeutic activity of a tumor-specific peptide vaccine.Our results outline a mechanism by which inhibitions of a single PI3K isoform can enhance the proliferative potential, function and survival of CD8+ T cells, with potential clinical implications for adoptive cell transfer and vaccine-based immunotherapies.
African Americans are disproportionately affected by early-onset, high-grade malignancies. A fraction of this cancer health disparity can be explained by genetic differences between individuals of African or European descent. Here the wild-type Pro/Pro genotype at the TP53Pro72Arg (P72R) polymorphism (SNP: rs1042522) is more frequent in African Americans with cancer than in African Americans without cancer (51% vs 37%), and is associated with a significant increase in the rates of cancer diagnosis in African Americans. To test the hypothesis that p53 allele-specific gene expression may contribute to African American cancer disparities, p53 hemizygous knockout variants were generated and characterized in the RKO colon carcinoma cell line, which is wild-type for p53 and heterozygous at the TP53Pro72Arg locus. Transcriptome profiling, using RNAseq, in response to the DNA-damaging agent etoposide revealed a large number of p53-regulated transcripts, but also a subset of transcripts that were TP53Pro72Arg allele specific. In addition, a shRNA-library suppressor screen for p53 allele-specific escape from p53-induced arrest was performed. Several novel RNAi suppressors of p53 were identified, one of which, PRDM1β (BLIMP-1), was confirmed to be an Arg-specific transcript. PRDM1β silences target genes by recruiting H3K9 trimethyl (H3K9me3) repressive chromatin marks, and is necessary for stem cell differentiation. These results reveal a novel model for African American cancer disparity, in which the TP53 codon 72 allele influences lifetime cancer risk by driving damaged cells to differentiation through an epigenetic mechanism involving gene silencing.
Implications
TP53 P72R polymorphism significantly contributes to increased African American cancer disparity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.