We aggregated genome-wide genotyping data from 32 European-descent GWAS (74,124 T2D cases, 824,006 controls) imputed to high-density reference panels of >30,000 sequenced haplotypes. Analysis of ˜27M variants (˜21M with minor allele frequency [MAF]<5%), identified 243 genome-wide significant loci (p<5x10-8; MAF 0.02%-50%; odds ratio [OR] 1.04-8.05), 135 not previously-implicated in T2D-predisposition. Conditional analyses revealed 160 additional distinct association signals (p<10-5) within the identified loci. The combined set of 403 T2D-risk signals includes 56 low-frequency (0.5%≤MAF<5%) and 24 rare (MAF<0.5%) index SNPs at 60 loci, including 14 with estimated allelic OR>2. Forty-one of the signals displayed effect-size heterogeneity between BMI-unadjusted and adjusted analyses. Increased sample size and improved imputation led to substantially more precise localisation of causal variants than previously attained: at 51 signals, the lead variant after fine-mapping accounted for >80% posterior probability of association (PPA) and at 18 of these, PPA exceeded 99%. Integration with islet regulatory annotations enriched for T2D association further reduced median credible set size (from 42 variants to 32) and extended the number of index variants with PPA>80% to 73. Although most signals mapped to regulatory sequence, we identified 18 genes as human validated therapeutic targets through coding variants that are causal for disease. Genome wide chip heritability accounted for 18% of T2D-risk, and individuals in the 2.5% extremes of a polygenic risk score generated from the GWAS data differed >9-fold in risk. Our observations highlight how increases in sample size and variant diversity deliver enhanced discovery and single-variant resolution of causal T2D-risk alleles, and the consequent impact on mechanistic insights and clinical translation.
Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n=321,223) and offspring birth weight (n=230,069 mothers), we identified 190 independent association signals (129 novel). We used structural equation modelling to decompose the contributions of direct fetal and indirect maternal genetic effects, and then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of those alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.