1. Scope -is the work directly or implicitly related to atmospheric composition? 2. Novelty -does the work provide a) a general and/or broader relevance (e.g. not a pure local study), b) new results or methods, and c) does it add significantly to the knowledge of atmospheric composition and its impacts?3. Quality -does the work contain high quality a) atmospheric observations, b) process studies, c) modeling exercises or d) data analysis?Will your paper be within the scope of Atmospheric Environment?We try to be flexible with novel scientific articles on issues of atmospheric composition even, if they are not directly related to atmospheric measurements (e.g. wind tunnel studies, dynamometer studies, remote sensing retrieval, etc). However, we are still cautious of purely mathematical derivations, preliminary results or insignificant case and local studies. The authors should make sure that the articles contain substantial contributions to the science of atmospheric composition before sending them for review.
Published by Copernicus Publications on behalf of the European Geosciences Union.
A. Baklanov et al.: Online coupled regional meteorology chemistry models in EuropeAbstract. Online coupled mesoscale meteorology atmospheric chemistry models have undergone a rapid evolution in recent years. Although mainly developed by the air quality modelling community, these models are also of interest for numerical weather prediction and regional climate modelling as they can consider not only the effects of meteorology on air quality, but also the potentially important effects of atmospheric composition on weather. Two ways of online coupling can be distinguished: online integrated and online access coupling. Online integrated models simulate meteorology and chemistry over the same grid in one model using one main time step for integration. Online access models use independent meteorology and chemistry modules that might even have different grids, but exchange meteorology and chemistry data on a regular and frequent basis. This article offers a comprehensive review of the current research status of online coupled meteorology and atmospheric chemistry modelling within Europe. Eighteen regional online coupled models developed or being used in Europe are described and compared. Topics discussed include a survey of processes relevant to the interactions between atmospheric physics, dynamics and composition; a brief overview of existing online mesoscale models and European model developments; an analysis on how feedback processes are treated in these models; numerical issues associated with coupled models; and several case studies and model performance evaluation methods. Finally, this article highlights selected scientific issues and emerging challenges that require proper consideration to improve the reliability and usability of these models for the three scientific communities: air quality, numerical meteorology modelling (including weather prediction) and climate modelling. This review will be of particular interest to model developers and users in all three fields as it presents a synthesis of scientific progress and provides recommendations for future research directions and priorities in the development, application and evaluation of online coupled models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.