PACS: 95.55.Vj 95.85.Ry 96.40.Tv
a b s t r a c tWe present results of a search for relativistic magnetic monopoles with the Baikal neutrino telescope NT200, using data taken between April 1998 and February 2003. No monopole candidates have been found. We set an upper limit 4.6 Â 10 À17 cm À2 s À1 sr À1 for the flux of monopoles with b m = 1. This is a factor of 20 below the Chudakov-Parker bound which is inferred from the very existence of large-scale galactic magnetic fields.
We review the present status of the Baikal Neutrino Project. The construction and performance of the large deep underwater Cherenkov detector for muons and neutrinos, NT-200, which is currently under construction in Lake Baikal are described. Some results obtained with the first stages of NT-200 -NT-36 (1993-95), NT-72 (1995-96) and NT-96 (1996-97) are presented, including the first clear neutrino candidates selected with 1994 and 1996 data.
We have analyzed a data set taken over 2.76 years live time with the Baikal neutrino telescope NT200. The goal of the analysis is to search for neutrinos from dark matter annihilation in the center of the Sun. Apart from the conventional annihilation channels bb, W + W − and τ + τ − we consider also the annihilation of dark matter particles into monochromatic neutrinos. From the absence of any excess of events from the direction of the Sun over the expected background, we derive 90% upper limits on the fluxes of muons and muon neutrinos from the Sun, as well as on the elastic cross sections of dark matter scattering on protons.
The Prototyping phase of the BAIKAL-GVD project has been started in April 2011 with the deployment of a three string engineering array which comprises all basic elements and systems of the Gigaton Volume Detector (GVD) in Lake Baikal. In April 2012 the version of engineering array which comprises the first full-scale string of the GVD demonstration cluster has been deployed and operated during 2012. The first stage of the GVD demonstration cluster which consists of three strings is deployed in April 2013. We review the Prototyping phase of the BAIKAL-GVD project and describe the configuration and design of the 2013 engineering array.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.