The aim of this study was to investigate miRNA profiles of clarified urine supernatant and combined urine vesicle fractions of healthy donors and patients with benign prostatic hyperplasia and prostate cancer (PCa). The comparative analysis of miRNA expression was conducted with a custom miRCURY LNA miRNA qPCR panel. Significant combinations of miRNA pairs were selected by the RandomForest-based feature selection algorithm Boruta; the difference of the medians between the groups and a 95% confidence interval was built using the bootstrap approach. The Asymptotic Wilcoxon-Mann-Whitney Test was performed for miRNA combinations to compare different groups of donors. Benjamini-Hochberg correction was used to adjust the statistical significance for multiple comparisons. The most diagnostically significant miRNAs pairs were miR-107-miR-26b.5p and miR-375.3p-miR-26b.5p in the urine supernatant fraction that discriminated the group of healthy patients and PCa patients, as well as miR-31.5p-miR-16.5p, miR-31.5p-miR-200b, miR-31.5p-miR-30e.3p and miR-31.5p-miR-660.5p in the fraction extracellular vesicles that were different between healthy men and benign prostate hyperplasia patients. Such statistical criteria as the occurrence of individual significant miRNA pairs in the total number of comparisons, median ΔCt difference, and confidence interval can be useful tools for determining reliable markers of PCa.
Urine of prostate cancer (PCa) carries miRNAs originated from prostate cancer cells as a part of both nucleoprotein complexes and cell-secreted extracellular vesicles. The analysis of such miRNA-markers in urine can be a convenient option for PCa screening. The aims of this study were to reveal miRNA–markers of PCa in urine and design a robust and precise diagnostic test, based on miRNA expression analysis. The expression analysis of the 84 miRNAs in paired urine extracellular vesicles (EVs) and cell free urine supernatant samples from healthy donors, patients with benign and malignant prostate tumours was done using miRCURY LNA miRNA qPCR Panels (Exiqon, Denmark). Sets of miRNAs differentially expressed between the donor groups were found in urine EVs and urine supernatant. Diagnostically significant miRNAs were selected and algorithm of data analysis, based on expression data on 24-miRNA in urine and obtained using 17 analytical systems, was designed. The developed algorithm of data analysis describes a series of steps necessary to define cut-off values and sequentially analyze miRNA expression data according to the cut-offs to facilitate classification of subjects in case/control groups and allows to detect PCa patients with 97.5% accuracy.
Lung cancer is one of major cancers, and survival of lung cancer patients is dictated by the timely detection and diagnosis. Cell-free circulating miRNAs were proposed as candidate biomarkers for lung cancer. These RNAs are frequently deregulated in lung cancer and can persist in bodily fluids for extended periods of time, shielded from degradation by membrane vesicles and biopolymer complexes. To date, several groups reported the presence of lung tumour-specific subsets of miRNAs in blood. Here we describe the profiling of blood plasma miRNAs in lung cancer patients, healthy individuals and endobronchitis patients using miRCURY LNA miRNA qPCR Serum/Plasma Panel (Exiqon). From 241 ratios differently expressed between cancer patients and healthy individuals 19 miRNAs were selected for verification using the same platform. LASSO-penalized logistic regression model, including 10 miRNA ratios comprised of 14 individual miRNAs discriminated lung cancer patients from both control groups with AUC of 0.979.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.