Mining regions in different parts of the world have been associated with the significant pollution of water, sediments, and soils by manganese and other chemical elements. This study assessed the degree of geochemical transformation caused by open-pit extraction and processing of mineral resources in the Kovdorsky District of Murmansk Oblast, 20 km from the Russia–Finland border. A second objective was to predict further changes co-driven by industrial pressure and high climatic instability in the polar region. The field study involved sampling water and sediments from virgin background streams and from the tailings storage facility, settling ponds, rivers, and lakes affected by ore mining and disintegration. Laboratory analyses included the study of elemental composition, redox potential, alkalinity and acidity, organic matter content, and other geochemical characteristics for a better understanding of pollutant migration patterns. We revealed elevated levels of potentially toxic elements in surface waters and bottom sediments which pose a risk to the human health via the household and drinking water supply. Pollution with manganese (Mn) was found to be the major environmental issue. Its natural presence in the river water was overridden a hundredfold by anthropogenic enrichment. This is problematic as Mn is easily bioaccumulated, which can lead to unwanted ecotoxicological effects, and—in the case of prolonged exposure to high doses of Mn and its compounds—to detrimental human health impacts. We believe that the changing climate may raise the water flow and thus expand the area of the hydrochemical anomaly. On the other hand, the activation of self-purification and dilution processes could lead to decreasing environmental Mn concentrations.
Abstract. Salt-affected soils will become more frequent in the next decades as arid and semiarid ecosystems are predicted to expand as a result of climate change. Nevertheless, little is known about organic matter (OM) dynamics in these soils, though OM is crucial for soil fertility and represents an important carbon sink. We aimed at investigating OM dynamics along a salinity and sodicity gradient in the soils of the southwestern Siberian Kulunda steppe (Kastanozem, non-sodic Solonchak, Sodic Solonchak) by assessing the organic carbon (OC) stocks, the quantity and quality of particulate and mineral-associated OM in terms of non-cellulosic neutral sugar contents and carbon isotopes (δ 13 C, 14 C activity), and the microbial community composition based on phospholipid fatty acid (PLFA) patterns. Aboveground biomass was measured as a proxy for plant growth and soil OC inputs. Our hypotheses were that (i) soil OC stocks decrease along the salinity gradient, (ii) the proportion and stability of particulate OM is larger in salt-affected Solonchaks compared to non-salt-affected Kastanozems, (iii) sodicity reduces the proportion and stability of mineral-associated OM, and (iv) the fungi : bacteria ratio is negatively correlated with salinity. Against our first hypothesis, OC stocks increased along the salinity gradient with the most pronounced differences between topsoils. In contrast to our second hypothesis, the proportion of particulate OM was unaffected by salinity, thereby accounting for only < 10 % in all three soil types, while mineral-associated OM contributed > 90 %. Isotopic data (δ 13 C, 14 C activity) and neutral sugars in the OM fractions indicated a comparable degree of OM transformation along the salinity gradient and that particulate OM was not more persistent under saline conditions. Our third hypothesis was also rejected, as Sodic Solonchaks contained more than twice as much mineral-bound OC than the Kastanozems, which we ascribe to the flocculation of OM and mineral components under higher ionic strength conditions. Contrary to the fourth hypothesis, the fungi : bacteria ratio in the topsoils remained fairly constant along the salinity gradient. A possible explanation for why our hypotheses were not affirmed is that soil moisture covaried with salinity along the transect, i.e., the Solonchaks were generally wetter than the Kastanozems. This might cause comparable water stress conditions for plants and microorganisms, either due to a low osmotic or a low matric potential and resulting in (i) similar plant growth and hence soil OC inputs along the transect, (ii) a comparable persistence of particulate OM, and (iii) unaffected fungi : bacteria ratios. We conclude that saltaffected soils contribute significantly to the OC storage in the semiarid soils of the Kulunda steppe, while most of the Published by Copernicus Publications on behalf of the European Geosciences Union. 14 N. Bischoff et al.: Organic matter dynamics along a salinity gradient OC is associated with minerals and is therefore effectively s...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.