Neuron-glial antigen 2 (NG2, also known as CSPG4) and hyaluronic acid receptor CD44 are chondroitin sulphate proteoglycans actively involved in brain development and its malignant transformation. Here, we aimed to compare prognostic significances of NG2, CD44 and Ki-67 expression in glioblastoma multiforme patients. Totally, 45 tissue samples and 83 paraffin-embedded tissues for 75 patients were analysed. The prognostic values of the genes were analysed using Kaplan-Meier survival curves. Grade III gliomas showed 2-fold difference in NG2 expression between anaplastic astrocytoma and oligoastrocytoma (10.1 ± 3.5 and 25.5 ± 14.5, respectively). For grade IV gliomas, upregulated NG2 expression (21.0 ± 6.8) was associated with poor glioblastoma multiforme prognosis (overall survival < 12 months) compared with glioblastoma multiforme patients with good prognosis (4.4 ± 3.2; overall survival > 12 months). Multivariate survival analysis using Cox proportional hazards model confirmed that high NG2 expression was associated with low survival of the patients (hazard ratio: 3.43; 95% confidence interval: 1.18-9.93; p = 0.02), whereas age (hazard ratio: 1.02; 95% confidence interval: 0.96-1.09; p = 0.42), tumour resection (hazard ratio: 1.03; 95% confidence interval: 0.98-1.08; p = 0.25) and sex (hazard ratio: 0.62; 95% confidence interval: 0.21-1.86; p = 0.40) did not show significant association with prognosis. Although the positive correlation was shown for NG2 and CD44 expression in the glioblastomas (Pearson coefficient = 0.954), Kaplan-Meier and multivariate survival analyses did not revealed a significant association of the increased CD44 expression (hazard ratio: 2.18; 95% confidence interval: 0.50-9.43; p = 0.30) or high Ki-67 proliferation index (hazard ratio: 1.10; 95% confidence interval: 1.02-1.20; p = 0.02) with the disease prognosis. The results suggest that upregulation of NG2/CSPG4 rather than changes in CD44 or Ki-67 expression is associated with low overall survival in glioblastoma multiforme patients, supporting NG2/CSPG4 as a potential prognostic marker in glioblastoma.
Heparan sulfate (HS) is an important component of the extracellular matrix and cell surface, which plays a key role in cell–cell and cell–matrix interactions. Functional activity of HS directly depends on its structure, which determined by a complex system of HS biosynthetic enzymes. During malignant transformation, the system can undergo significant changes, but for glioma, HS biosynthesis has not been studied in detail. In this study, we performed a comparative analysis of the HS biosynthetic system in human gliomas of different grades. RT-PCR analysis showed that the overall transcriptional activity of the main HS biosynthesis-involved genes (EXT1, EXT2, NDST1, NDST2, GLCE, HS2ST1, HS3ST1, HS3ST2, HS6ST1, HS6ST2, SULF1, SULF2, HPSE) was decreased by 1.5–2-fold in Grade II-III glioma (p < 0.01) and by 3-fold in Grade IV glioma (glioblastoma multiforme, GBM) (p < 0.05), as compared with the para-tumourous tissue. The inhibition was mainly due to the elongation (a decrease in EXT1/2 expression by 3–4-fold) and 6-O-sulfation steps (a decrease in 6OST1/2 expression by 2–5-fold) of the HS biosynthesis. Heparanase (HPSE) expression was identified in 50% of GBM tumours by immunostaining, and was characterised by a high intratumoural heterogeneity of the presence of the HPSE protein. The detected disorganisation of the HS biosynthetic system in gliomas might be a potential molecular mechanism for the changes of HS structure and content in tumour microenvironments, contributing to the invasion of glioma cells and the development of the disease.
Glycosaminoglycans are major components of brain extracellular matrix (ECM), although heparan sulfate (HS) contribution in brain physiology and carcinogenesis remains underinvestigated. This study examined HS content and distribution in glioblastoma multiforme (GBM) tissues in the context of potential molecular mechanisms underlying its deregulation in brain tumours. Totally, 42 tissue samples and paraffin-embedded tissues for 31 patients with different prognosis were investigated. HS expression was demonstrated in 50-55% of the GBM tumours by immunohistochemistry (IHC), while almost no HS content was detected in the surrounding paratumourous brain tissues. Heterogeneous HS distribution in the HS-positive tumours was more related to the necrosis or glandular-like brain zones rather than glioma cells with high or low Ki-67 index. According the Kaplan-Meier curves, HS accumulation in glioma cells was associated with low relapse-free survival (RS) of the GBM patients (p < 0.05) and was likely to be due to the increased transcriptional activity of HSPG core proteins (syndecan-1, 2-3 fold; glypican-1, 2,5 fold; perlecan/HSPG2, 13-14 fold). Activation of perlecan/HSPG2 expression correlated with the patients' survival according Kaplan-Meier (p = 0.0243) and Cox proportional-hazards regression (HR = 3.1; P(Y) = 0.03) analyses, while up-regulation of syndecan-1 and glypican-1 was not associated with the patients survival. Taken together, the results indicate that increase of HS content and up-regulation of perlecan/HSPG2 expression in glioblastoma tissues contribute to tumour development through the transformation of brain extracellular matrix into tumour microenvironment, and represent negative prognostic factors for glioblastoma progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.