The creation of multi-stimuli-sensitive composite polymer–inorganic materials is a practical scientific task. The combination of photoactive magneto-piezoelectric nanomaterials and ferroelectric polymers offers new properties that can help solve environmental and energy problems. Using the doctor blade casting method with the thermally induced phase separation (TIPS) technique, we synthesized a hybrid polymer–inorganic nanocomposite porous membrane based on polyvinylidene fluoride (PVDF) and bismuth ferrite (BiFeO3/BFO). We studied the samples using transmission and scanning electron microscopy (TEM/SEM), infrared Fourier spectroscopy (FTIR), total transmission and diffuse reflection, fluorescence microscopy, photoluminescence (PL), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), vibrating-sample magnetometer (VSM), and piezopotential measurements. Our results demonstrate that the addition of BFO increases the proportion of the polar phase from 76.2% to 93.8% due to surface ion–dipole interaction. We also found that the sample exhibits laser-induced fluorescence, with maxima at 475 and 665 nm depending on the presence of nanoparticles in the polymer matrix. Furthermore, our piezo-photocatalytic experiments showed that under the combined actions of ultrasonic treatment and UV–visible light irradiation, the reaction rate increased by factors of 68, 13, 4.2, and 1.6 compared to sonolysis, photolysis, piezocatalysis, and photocatalysis, respectively. This behavior is explained by the piezoelectric potential and the narrowing of the band gap of the composite due to the mechanical stress caused by ultrasound.
The article presents the results of the preparation and study of a gel-polymer electrolyte based on lignin obtained from Pinus sylvestris. Sulfonation and subsequent chlorination of lignin make possible implementation of the principle of mono-ionic conductivity in a natural biopolymer matrix, which provides predominantly cationic conductivity of the electrolyte. Based on the results of the qualitative and quantitative analysis of the synthesized samples, the mechanisms of the chemical conversion of the biopolymer, the structure models of the converted fragments of macromolecules, as well as the quantum-chemical calculation of their electronic and geometric parameters are presented. The key electronic characteristics of the gel polymer electrolytes (GPE) based on a composite of lignins with 20 wt.% polyvinyl alcohol are determined by impedance spectroscopy. The maximum value of the specific volume conductivity is 2.48 × 10−4 S cm−1, which is comparable with most commercial electrolytes of this type, but at the same time, record values are reached in the number of lithium cation transfer tLi+ of 0.89. The studies allow to identify the basic laws of the effect of chemical modification on the structure of GPE and describe the mechanism of ionic conductivity.
The aim of this work is preparation and investigation of copper conductive paths by printing with a different type of functional ink. The solutions based on copper-containing complex compounds were used as inks instead of dispersions of metal nanoparticles. Thermal characteristics of synthesized precursors were studied by thermogravimetry in an argon atmosphere. Based on the comparison of decomposition temperature, the dimethylamine complex of copper formate was found to be more suitable precursor for the formation of copper layers. Structure and performance of this compound was studied in detail by X-ray diffraction, test of wettability, printing on flexible substrate, and electrical measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.