By sequencing 523 ancient humans, we show that the primary source of ancestry in modern South Asians is a prehistoric genetic gradient between people related to early hunter-gatherers of Iran and Southeast Asia. After the Indus Valley Civilization’s decline, its people mixed with individuals in the southeast to form one of the two main ancestral populations of South Asia, whose direct descendants live in southern India. Simultaneously, they mixed with descendants of Steppe pastoralists who, starting around 4000 years ago, spread via Central Asia to form the other main ancestral population. The Steppe ancestry in South Asia has the same profile as that in Bronze Age Eastern Europe, tracking a movement of people that affected both regions and that likely spread the distinctive features shared between Indo-Iranian and Balto-Slavic languages.
A comparative analysis of the genetic diversity of ancient and modern sheep can shed light on the origin of these animals and their distribution as well as help to evaluate the role of humans at each formation stage of different sheep breeds. Here we isolated ancient DNA and performed sequencing of the mitochondrial DNA D-loop from 17 sheep bone remains (~4000-1000 years old) found in the archaeological complexes in the south of Altai (Western Siberia). The length of the sequences obtained ranged between 318 and 586 bp. The haplotype diversity and nucleotide diversity were 0.801 ± 0.081 and 0.0096 ± 0.0014 respectively. The average number of nucleotide differences was ~3.1. Nucleotide sequence analysis revealed that 15 specimens were nested within previously described A,B,C,D and E lineages and that two specimens had a basal position relative to the rest of the analyzed samples. A relatively high diversity of sheep haplotypes, including the presence of two basal haplotypes, indicates that the Altai region may have been a transport route of human migration. Further ancient DNA analysis of other specimens and deeper genome sequencing of samples with novel haplotypes is needed to better understand the demographic history of sheep in Southern Siberia.
Archaeogenomic studies have largely elucidated human population history in West Eurasia during the Stone Age. However, despite being a broad geographical region of significant cultural and linguistic diversity, little is known about the population history in North Asia. We present complete mitochondrial genome sequences together with stable isotope data for 41 serially sampled ancient individuals from North Asia, dated between c.13,790 BP and c.1,380 BP extending from the Palaeolithic to the Iron Age. Analyses of mitochondrial DNA sequences and haplogroup data of these individuals revealed the highest genetic affinity to present-day North Asian populations of the same geographical region suggesting a possible long-term maternal genetic continuity in the region. We observed a decrease in genetic diversity over time and a reduction of maternal effective population size (Ne) approximately seven thousand years before present. Coalescent simulations were consistent with genetic continuity between present day individuals and individuals dating to 7,000 BP, 4,800 BP or 3,000 BP. Meanwhile, genetic differences observed between 7,000 BP and 3,000 BP as well as between 4,800 BP and 3,000 BP were inconsistent with genetic drift alone, suggesting gene flow into the region from distant gene pools or structure within the population. These results indicate that despite some level of continuity between ancient groups and present-day populations, the region exhibits a complex demographic history during the Holocene.
This study provides new elements that contribute to our understanding of the genetic interactions between populations in Eneolithic and Bronze Age southern Siberia. Our results support the hypothesis of a genetic link between Afanasievo and Yamnaya (in western Eurasia), as suggested by previous studies of other markers. However, we found no Y-chromosome lineage evidence of a possible Afanasievo migration to the Tarim Basin. Moreover, the presence of Y-haplogroup Q in Okunevo individuals links them to Native American populations, as was suggested by whole-genome sequencing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.