The evaporation residue cross sections oER in reactions between massive nuclei have been analyzed within di8'erent models of complete fusion. The calculations in the framework of the optical model, the surface friction model, and the macroscopic dynamic model can give the results which are by few orders of magnitude different from experimental data. This takes place due to neglect of the competition between complete fusion and quasifission. A possible mechanism of compound nucleus formation in heavy-ion-induced reactions has been suggested. The analysis of the complete fusion of nuclei on the basis of dinuclear system approach has allowed one to reveal an important feature of the fusion process of massive nuclei, that is, the appearance of the fusion barrier during dinuclear system evolution to a compound nucleus. As a result, the competition between complete fusion and quasifission arises and strongly reduces the cross section of the compound nucleus formation. A model is proposed for calculation of this competition in a massive symmetric dinuclear system. This model is applied for collision energies above the Coulomb barrier. The crER values calculated in the framework of dinuclear system approach seem to be close to the experimental data. For illustration the reactions Mo+ Mo, Pd+ Pd, and Sn+ Zr have been considered. PACS number(s): 25.70.Gh, 25.70. Jj, 24.10.i
A model of competition between complete fusion and quasifission channels in fusion of two massive nuclei is extended to include the influence of dissipative effects on the dynamics of nuclear fusion. By using the multidimensional Kramers-type stationary solution of the Fokker-Planck equation, the fusion rate through the inner fusion barrier in mass asymmetry is studied.
Fusion probabilities in symmetric
Experiments on m=2, n=1 tearing mode suppression and on avoidance of density limit disruptions by electron cyclotron resonance heating (ECRH) were performed on the T-10 tokamak. Partial suppression of the m=2, n=1 mode by the high frequency (HF) power deposition in the vicinity of the q=2 surface was observed. Development of external kink modes with HF power injection can result in m=2, n=1 mode destabilization under specific operating conditions. ECRH suppresses m=2, n=1 mode activity at extremely high values of electron densities and prevents the density limit disruptions practically independently of EC resonance position. Complete compensation of the additional peripheral heat losses near the density limit by ECRH should be responsible for this result. No effect of electron cyclotron current drive (ECCD) on m=2, n=1 mode stability has been observed because of insufficient values of HF driven current in the vicinity of the q=2 surface under the operating conditions of the experiment
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.