Long-duration spaceflight induces detrimental changes in human physiology. Its residual effects and mechanisms remain unclear. We prospectively investigated the changes in cerebrospinal fluid (CSF) volume of the brain ventricular regions in space crew by means of a region of interest analysis on structural brain scans. Cosmonaut MRI data were investigated preflight (n = 11), postflight (n = 11), and at long-term follow-up 7 mo after landing (n = 7). Post hoc analyses revealed a significant difference between preflight and postflight values for all supratentorial ventricular structures, i.e., lateral ventricle (mean % change ± SE = 13.3 ± 1.9), third ventricle (mean % change ± SE = 10.4 ± 1.1), and the total ventricular volume (mean % change ± SE = 11.6 ± 1.5) (all P < 0.0001), with higher volumes at postflight. At follow-up, these structures did not quite reach baseline levels, with still residual increases in volume for the lateral ventricle (mean % change ± SE = 7.7 ± 1.6; P = 0.0009), the third ventricle (mean % change ± SE = 4.7 ± 1.3; P = 0.0063), and the total ventricular volume (mean % change ± SE = 6.4 ± 1.3; P = 0.0008). This spatiotemporal pattern of CSF compartment enlargement and recovery points to a reduced CSF resorption in microgravity as the underlying cause. Our results warrant more detailed and longer longitudinal follow-up. The clinical impact of our findings on the long-term cosmonauts’ health and their relation to ocular changes reported in space travelers requires further prospective studies.
This large international radiation dose survey demonstrates considerable reduction of radiation exposure in coronary CTA during the last decade. However, the large inter-site variability in radiation exposure underlines the need for further site-specific training and adaptation of contemporary cardiac scan protocols.
The present study reports alterations of task-based functional brain connectivity in a group of 11 cosmonauts after a long-duration spaceflight, compared to a healthy control group not involved in the space program. To elicit the postural and locomotor sensorimotor mechanisms that are usually most significantly impaired when space travelers return to Earth, a plantar stimulation paradigm was used in a block design fMRI study. The motor control system activated by the plantar stimulation involved the pre-central and post-central gyri, SMA, SII/operculum, and, to a lesser degree, the insular cortex and cerebellum. While no post-flight alterations were observed in terms of activation, the network-based statistics approach revealed task-specific functional connectivity modifications within a broader set of regions involving the activation sites along with other parts of the sensorimotor neural network and the visual, proprioceptive, and vestibular systems. The most notable findings included a post-flight increase in the stimulation-specific connectivity of the right posterior supramarginal gyrus with the rest of the brain; a strengthening of connections between the left and right insulae; decreased connectivity of the vestibular nuclei, right inferior parietal cortex (BA40) and cerebellum with areas associated with motor, visual, vestibular, and proprioception functions; and decreased coupling of the cerebellum with the visual cortex and the right inferior parietal cortex. The severity of space motion sickness symptoms was found to correlate with a post- to pre-flight difference in connectivity between the right supramarginal gyrus and the left anterior insula. Due to the complex nature and rapid dynamics of adaptation to gravity alterations, the post-flight findings might be attributed to both the long-term microgravity exposure and to the readaptation to Earth’s gravity that took place between the landing and post-flight MRI session. Nevertheless, the results have implications for the multisensory reweighting and gravitational motor system theories, generating hypotheses to be tested in future research.
Actuality The course of the novel coronavirus disease (COVID-19) is unpredictable. It manifests in some cases as increasing inflammation to even the onset of a cytokine storm and irreversible progression of acute respiratory syndrome, which is associated with the risk of death in patients. Thus, proactive anti-inflammatory therapy remains an open serious question in patients with COVID-19 and pneumonia, who still have signs of inflammation on days 7–9 of the disease: elevated C-reactive protein (CRP)>60 mg/dL and at least two of the four clinical signs: fever >37.5°C; persistent cough; dyspnea (RR >20 brpm) and/or reduced oxygen blood saturation <94% when breathing atmospheric air. We designed the randomized trial: COLchicine versus Ruxolitinib and Secukinumab in Open-label Prospective Randomized Trial in Patients with COVID-19 (COLORIT). We present here data comparing patients who received colchicine with those who did not receive specific anti-inflammatory therapy. Results of the comparison of colchicine, ruxolitinib, and secukinumab will be presented later.Objective Compare efficacy and safety of colchicine compared to the management of patients with COVID-19 without specific anti-inflammatory therapy.Material and Methods Initially, 20 people were expected to be randomized in the control group. However, enrollment to the control group was discontinued subsequently after the inclusion of 5 patients due to the risk of severe deterioration in the absence of anti-inflammatory treatment. Therefore, 17 patients, who had not received anti-inflammatory therapy when treated in the MSU Medical Research and Educational Center before the study, were also included in the control group. The effects were assessed on day 12 after the inclusion or at discharge if it occurred earlier than on day 12. The primary endpoint was the changes in the SHOCS-COVID score, which includes the assessment of the patient’s clinical condition, CT score of the lung tissue damage, the severity of systemic inflammation (CRP changes), and the risk of thrombotic complications (D-dimer) [1].Results The median SHOCS score decreased from 8 to 2 (p = 0.017), i.e., from moderate to mild degree, in the colchicine group. The change in the SHOCS-COVID score was minimal and statistically insignificant in the control group. In patients with COVID-19 treated with colchicine, the CRP levels decreased rapidly and normalized (from 99.4 to 4.2 mg/dL, p<0.001). In the control group, the CRP levels decreased moderately and statistically insignificantly and achieved 22.8 mg/dL by the end of the follow-up period, which was still more than four times higher than normal. The most informative criterion for inflammation lymphocyte-to-C-reactive protein ratio (LCR) increased in the colchicine group by 393 versus 54 in the control group (p = 0.003). After treatment, it was 60.8 in the control group, which was less than 100 considered safe in terms of systemic inflammation progression. The difference from 427 in the colchicine group was highly significant (p = 0.003).The marked and rapid decrease in the inflammation factors was accompanied in the colchicine group by the reduced need for oxygen support from 14 (66.7%) to 2 (9.5%). In the control group, the number of patients without anti-inflammatory therapy requiring oxygen support remained unchanged at 50%. There was a trend to shorter hospital stays in the group of specific anti-inflammatory therapy up to 13 days compared to 17.5 days in the control group (p = 0.079). Moreover, two patients died in the control group, and there were no fatal cases in the colchicine group. In the colchicine group, one patient had deep vein thrombosis with D-dimer elevated to 5.99 µg/mL, which resolved before discharge.Conclusions Colchicine 1 mg for 1-3 days followed by 0.5 mg/day for 14 days is effective as a proactive anti-inflammatory therapy in hospitalized patients with COVID-19 and viral pneumonia. The management of such patients without proactive anti-inflammatory therapy is likely to be unreasonable and may worsen the course of COVID-19. However, the findings should be treated with caution, given the small size of the trial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.