The superconducting fault current limiter (SFCL) for a nominal voltage of 220 kV and a rated current of 1200 A was developed by SuperOx company to be applied in high voltage substation in Moscow, Russia. The device is a three-phase dead-tank apparatus and is equipped with a closed-cycle cryocooling system. Liquid nitrogen serves simultaneously as a cooling and an insulating media. The device makes use of about 25 km of 12 mm wide high-performance 2G HTS wire with uniform properties along the length. High-voltage tests of the device were performed at Korea Electrotechnology Research Institute (KERI) in accordance with the IEEE C37.302-2015 test guide and Russian national standards for high voltage electrical equipment. The installation of the SFCL at substation in parallel with the existing air core reactors was completed in 2019. Since then, the device is in a daily operation. Over this period, SFCL has fully confirmed its design specifications including transmitting over 80 million kWh to customers and experiencing three fault current events. High temperature superconductors, superconducting fault current limiter, cryogenic power equipment, electrical grid
Современные исследования, проводимые в области управляемого термоядерного синтеза, вышли на свою завершающую стадию -создание экспериментального реактора и осуществление генерации электрической энергии. С этой целью в Европе создаётся мощная лазерная установка HiPER (High Power Laser Energy Research), функционирование которой требует формирования и доставки криогенных мишеней ударного поджига с высокой частотой (порядка нескольких Гц). Отметим, что мишени должны быть свободными (т.е. свободными от какого-либо подвеса). В ФИАН разработана технология FST (FreeStanding Targets), в основу которой положен принцип работы с движущимися бесподвесными мишенями, что позволяет формировать криогенные мишени в непрерывном режиме или с необходимой частотой по замкнутому циклу FST-технологий: заполнение-формирование-доставка. В работе обсуждаются результаты по исследованию первого этапа цикла FST, а именно моделирование заполнения массива оболочек класса HiPER газообразным топливом до давления ~1000 атм при 300 К для различных материалов и разной конструкции оболочки. Приведены данные оптимизационных расчётов по диффузионному заполнению одно-и многослойных оболочек в режиме с постоянным градиентом давления для двух видов топлива: дейтерий (D 2 ) и дейтерий-тритиевая смесь (DT). Представлены результаты экспериментов и даны практические рекомендации по запол-нению оболочек класса HiPER, в том числе оболочек из материала ПАМС (поли-альфа-метил-стирол), с использованием систе-мы заполнения, существующей в ФИАН.Ключевые слова: инерционный термоядерный синтез (УТС), криогенные мишени, заполнение массива оболочек топливом. HiPER is a proposed European High Power laser Energy Research facility dedicated to demonstrating the feasibility of laser driven fusion for IFE reactor. The HiPER facility operation requires the formation and delivery of spherical shock ignition cryogenic targets with a rate of several Hz. The targets must be free-standing, or unmounted. At the Lebedev Physical Institute (LPI), significant progress has been made in the technology development based on rapid fuel layering inside moving free-standing targets that refers to as FST layering method. This allows creating continuously or repeatably operating cryogenic target supply system in accordance with a closed FST cycle: fuel filling -fuel layering -target injection. In this report, we have presented the results of our expertise of the first stage of the FST cycle: development of mathematical models for filling a batch of HiPER-scale polymer shells with a fuel gas up to 1000 atm at 300 K for different geometry and materials of the shell. Modeling fill time and rate has shown that filling stage optimization requires using the ramp filling method for both single-and multilayered polymer shells. Both deuterium (D 2 ) and deuterium-tritium (DT) mixture as fuel have been considered. Therefore, the work objective is to describe the experimental results and to give a practical guide for developing an efficient pressurization scheme for HiPER-scale shells (including the she...
Abstract-Three pairs of 20.5 kA current leads for the ATLAS Toroid Magnets have been designed, manufactured and tested at Kurchatov Institute. The current leads have a high mechanical reliability and the vacuum tightness under 30 bars of internal pressure. The insulation between the current carrying parts and the mounting flange, the hydraulic connections and the temperature gauges withstand the overvoltage of at least 2 kV. The current leads are fully equipped with diagnostics needed for safety and control. The current leads were tested up to 24 kA. According to CERN's specification they were also tested in the absence of any cooling at very slow current discharge rate (5 A/s) from 20.5 kA to zero without any excessive overheating. Nowadays the current leads are successfully used at the ATLAS Magnet Test Facility at CERN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.