Experiments and simulations to achieve high values of plasma parameters at the Globus-M spherical tokamak (ST) at moderate auxiliary heating power (0.2-0.8 MW) are described. Important distinguishing features are the low edge safety factor range, which is unusual for spherical tokamaks, 2.7 < q < 5 and small plasma-outer wall space (3-5 cm). High ion heating efficiency with NB injection was demonstrated. Results of numerical simulation of fast ion trajectories are described and fast ion generation during NB injection and ICR heating is discussed. Also results on their confinement and slowing down processes investigation are presented. Reasons for achievement of high IC heating efficiency are outlined. Reliable H-mode regime achievement is described. Transport ASTRA modeling demonstrated that during NB heated H-mode ion heat diffusivity remains neoclassical and the particle diffusion coefficient inside transport barrier decreases significantly. RGTi divertor tile analysis was performed after irradiation by plasma during big number of shots (10000 shots in average). Mixed layer composition is measured and deuterium retention in different tokamak first wall area is estimated. Plasma jet injection experiments with upgraded plasma jet are described. Jet penetration to the plasma center with immense increase of density and temperature drop is proved and analogy with pellet injection is outlined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.