Cellulose hydrogels and films are advantageous materials that are applied in modern industry and medicine. Cellulose hydrogels have a stable scaffold and never form films upon drying, while viscous cellulose hydrosols are liquids that could be used for film production. So, stabilizing either a gel or sol state in cellulose suspensions is a worthwhile challenge, significant for the practical applications. However, there is no theory describing the cellulose fibers’ behavior and processes underlying cellulose-gel-scaffold stabilizing. In this work, we provide a phenomenological mechanism explaining the transition between the stable-gel and shapeless-sol states in a cellulose suspension. We suppose that cellulose macromolecules and nanofibrils under strong dispersing treatment (such as sonication) partially untwist and dissociate, and then reassemble in a 3D scaffold having the individual elements twisted in the nodes. The latter leads to an exponential increase in friction forces between the fibers and to the corresponding fastening of the scaffold. We confirm our theory by the data on the circular dichroism of the cellulose suspensions, as well as by the direct scanning electron microscope (SEM) observations and theoretical assessments.
The cold alkaline treatment or mercerization of cellulose is widely used in industry to enrich the cellulose raw with high-molecular-weight $$\alpha$$
α
-cellulose. Washing out of hemicelluloses by alkalies is accompanied by the rearrangement of the cellulose chains’ packing, well known as a transition between cellulose I and cellulose II.
Cellulose II can also be produced by the precipitation of the cellulose solutions (regeneration). The currently accepted theory implies that in cellulose II, both mercerized and regenerated, the macromolecules are arranged antiparallelly. However, forming such a structure in the course of the mercerization seems to be significantly hindered, while it seems to be quite possible in the regeneration process. In this work, we discuss the sticking points in the theory on the antiparallel structure of mercerized cellulose from a theoretical point of view summarizing all of the available experimental data in the field.
Microcrystalline cellulose (MCC) is a chemically pure product of cellulose mechano-chemical conversion. It is a white powder composed of the short fragments of the plant cells widely used in the modern food industry and pharmaceutics. The acid hydrolysis of the bleached lignin-free cellulose raw is the main and necessary stage of MCC production. For this reason, the acid hydrolysis is generally accepted to be the driving force of the fragmentation of the initial cellulose fibers into MCC particles. However, the low sensibility of the MCC properties to repeating the hydrolysis forces doubting this point of view. The sharp, cleave-looking edges of the MCC particles suggesting the initial cellulose fibers were fractured; hence the hydrolysis made them brittle. Zhurkov showed that mechanical stress decreases the activation energy of the polymer fracture, which correlates with the elevated enthalpy of the MCC thermal destruction compared to the initial cellulose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.