The ''island of inversion'' nucleus 32 Mg has been studied by a (t, p) two neutron transfer reaction in inverse kinematics at REX-ISOLDE. The shape coexistent excited 0 þ state in 32 Mg has been identified by the characteristic angular distribution of the protons of the ÁL ¼ 0 transfer. The excitation energy of 1058 keV is much lower than predicted by any theoretical model. The low-ray intensity observed for the decay of this 0 þ state indicates a lifetime of more than 10 ns. Deduced spectroscopic amplitudes are compared with occupation numbers from shell-model calculations. The evolution of shell structure in exotic nuclei as a function of the proton (Z) and neutron (N) number is currently at the center of many theoretical and experimental investigations [1,2]. It has been realized that the interaction of the last valence protons and neutrons, in particular, the monopole component of the residual interaction between those nucleons, can lead to significant shifts in the single-particle energies, leading to the disappearance of classic shell closures and the appearance of new shell gaps [3]. A prominent example is the collapse of the N ¼ 20 shell gap in the neutron-rich oxygen isotopes where instead a new magic shell gap appears for 24 O at N ¼ 16 [4,5]. Recent work showed that the disappearance of the N ¼ 20 shell can be attributed to the monopole effect of the tensor force [3,6,7]. The reduced strength of the attractive interaction between the proton d 5=2 and the neutron d 3=2 orbitals causes the d 3=2 orbital to rise in energy and come closer to the f 7=2 orbital. In regions without pronounced shell closures correlations between the valence nucleons may become as large as the spacing of the single-particle energies. This can thus lead to particle-hole excitations to higher-lying single-particle states enabling deformed configurations to be lowered in energy. This may result in low-lying collective excitations, the coexistence of different shapes at low energies or even the deformation of the ground state for nuclei with the conventional magic number N ¼ 20. Such an effect occurs in the ''island of inversion'', one of most studied regions of exotic nuclei in the nuclear chart. In this region of neutron-rich nuclei around the magic number N ¼ 20 strongly deformed ground states in Ne, Na, and Mg isotopes have been observed [8-11]. Because of the reduction of the N ¼ 20 shell gap, quadrupole correlations can enable low-lying deformed 2p-2h intruder states from the fp shell to compete with spherical normal neutron 0p-0h states of the sd shell. In this situation the promotion of a neutron pair across the N ¼ 20 gap can result in deformed intruder ground states. Consequentially, the competition of two configurations can lead to the coexistence of spherical and deformed 0 þ states in the neutron-rich 30;32 Mg nuclei [12]. Coulomb excitation experiments have shown that 30 Mg has a rather small BðE2Þ value for the 0 þ gs ! 2 þ 1 transition [13,14] placing this nucleus outside the island of inversion. The excited deform...
In an experiment at the SISSI/LISE3 facility of GANIL, we have studied the decay of the two proton-rich nuclei 45 Fe and 48 Ni. We identified 30 implantations of 45 Fe and observed for the second time four implantation events of 48 Ni. In 17 cases, 45 Fe decays by two-proton emission with a decay energy of 1.154(16) MeV and a half-life of T 1/2 = 1.6 +0.5 −0.3 ms. The observation of 48 Ni and of its decay allows us to deduce a half-life of T 1/2 = 2.1 +2.1 −0.7 ms. One out of four decay events is completely compatible with two-proton radioactivity and may therefore indicate that 48 Ni has a two-proton radioactivity branch. We discuss all information now available on two-proton radioactivity for 45 Fe and 48 Ni and compare it to theoretical models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.