Undoped, high-quality diamond is, under almost all circumstances, one of the best insulators known. However, diamond covered with chemically bound hydrogen shows a pronounced conductivity when exposed to air. This conductivity arises from positive-charge carriers (holes) and is confined to a narrow near-surface region. Although several explanations have been proposed, none has received wide acceptance, and the mechanism remains controversial. Here, we report the interactions of hydrogen-terminated, macroscopic diamonds and diamond powders with aqueous solutions of controlled pH and oxygen concentration. We show that electrons transfer between the diamond and an electrochemical reduction/oxidation couple involving oxygen. This charge transfer is responsible for the surface conductivity and also influences contact angles and zeta potentials. The effect is not confined to diamond and may play a previously unrecognized role in other disparate systems.
Single-walled carbon nanotubes can be classified as either metallic or semiconducting, depending on their conductivity, which is determined by their chirality. Existing synthesis methods cannot controllably grow nanotubes with a specific type of conductivity. By varying the noble gas ambient during thermal annealing of the catalyst, and in combination with oxidative and reductive species, we altered the fraction of tubes with metallic conductivity from one-third of the population to a maximum of 91%. In situ transmission electron microscopy studies reveal that this variation leads to differences in both morphology and coarsening behavior of the nanoparticles that we used to nucleate nanotubes. These catalyst rearrangements demonstrate that there are correlations between catalyst morphology and resulting nanotube electronic structure and indicate that chiral-selective growth may be possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.