Bone loss is a current limitation for long-term space exploration. Bone markers, calcitropic hormones, and calcium kinetics of crew members on space missions of 4-6 months were evaluated. Spaceflight-induced bone loss was associated with increased bone resorption and decreased calcium absorption.Introduction: Bone loss is a significant concern for the health of astronauts on long-duration missions. Defining the time course and mechanism of these changes will aid in developing means to counteract these losses during space flight and will have relevance for other clinical situations that impair weight-bearing activity. Materials and Methods: We report here results from two studies conducted during the Shuttle-Mir Science Program. Study 1 was an evaluation of bone and calcium biochemical markers of 13 subjects before and after long-duration (4-6 months) space missions. In study 2, stable calcium isotopes were used to evaluate calcium metabolism in six subjects before, during, and after flight. Relationships between measures of bone turnover, biochemical markers, and calcium kinetics were examined. Results: Pre-and postflight study results confirmed that, after landing, bone resorption was increased, as indicated by increases in urinary calcium (p < 0.05) and collagen cross-links (N-telopeptide, pyridinoline, and deoxypyridinoline were all increased >55% above preflight levels, p < 0.001). Parathyroid hormone and vitamin D metabolites were unchanged at landing. Biochemical markers of bone formation were unchanged at landing, but 2-3 weeks later, both bone-specific alkaline phosphatase and osteocalcin were significantly (p < 0.01) increased above preflight levels. In studies conducted during flight, bone resorption markers were also significantly higher than before flight. The calcium kinetic data also validated that bone resorption was increased during flight compared with preflight values (668 ± 130 versus 427 ± 153 mg/day; p < 0.001) and clearly documented that true intestinal calcium absorption was significantly lower during flight compared with preflight values (233 ± 87 versus 460 ± 47 mg/day; p < 0.01). Weightlessness had a detrimental effect on the balance in bone turnover such that the daily difference in calcium retention during flight compared with preflight values approached 300 mg/day (−234 ± 102 versus 63 ± 75 mg/day; p < 0.01). Conclusions: These bone marker and calcium kinetic studies indicated that the bone loss that occurs during space flight is a consequence of increased bone resorption and decreased intestinal calcium absorption.
Dry immersion, which is a ground-based model of prolonged conditions of microgravity, is widely used in Russia but is less well known elsewhere. Dry immersion involves immersing the subject in thermoneutral water covered with an elastic waterproof fabric. As a result, the immersed subject, who is freely suspended in the water mass, remains dry. For a relatively short duration, the model can faithfully reproduce most physiological effects of actual microgravity, including centralization of body fluids, support unloading, and hypokinesia. Unlike bed rest, dry immersion provides a unique opportunity to study the physiological effects of the lack of a supporting structure for the body (a phenomenon we call 'supportlessness'). In this review, we attempt to provide a detailed description of dry immersion. The main sections of the paper discuss the changes induced by long-term dry immersion in the neuromuscular and sensorimotor systems, fluid-electrolyte regulation, the cardiovascular system, metabolism, blood and immunity, respiration, and thermoregulation. The long-term effects of dry immersion are compared with those of bed rest and actual space flight. The actual and potential uses of dry immersion are discussed in the context of fundamental studies and applications for medical support during space flight and terrestrial health care.
Accurately collected 24-hour urine collections are presumed to be valid for estimating salt intake in individuals. We performed two independent ultra-long-term salt balance studies lasting 105 (4 men) and 205 (6 men) days in 10 men simulating a flight to Mars. We controlled dietary intake of all constituents for months at salt intakes of 12, 9, and 6 grams per day and collected all urine. The subjects’ daily menus consisted of 27,279 individual servings, out of which 83.0% were completely consumed, 16.5% completely rejected, and 0.5% incompletely consumed. Urinary recovery of dietary salt was 92% of recorded intake, indicating long-term steady state sodium balance in both studies. Even at fixed salt intake, 24-hour sodium excretion (UNaV) showed infradian rhythmicity. We defined a ±25 mmol deviation from the average difference between recorded sodium intake and UNaV as the prediction interval to accurately classify a 3-gram difference in salt intake. Due to the biological variability in UNaV, only every-other daily urine sample correctly classified a 3-gram difference in salt intake (49%). By increasing the observations to three consecutive 24-hour collections and sodium intakes, classification accuracy improved to 75%. Collecting seven 24-hour urines and sodium intake samples improved classification accuracy to 92%. We conclude that single 24-hour urine collections at intakes ranging from 6–12 grams salt per day were not suitable to detect a 3-gram difference in individual salt intake. Repeated measurements of 24-hour UNaV improve precision. This knowledge could be relevant to patient care and the conduct of intervention trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.