In this study, using the Box–Behnken model, we optimized the ethanolic extraction of phytochemicals from Enantia chloranta bark for the first time, assessed the composition with HPLC-MS/MS, performed the green synthesis of silver nanoparticles (AgNPs) and characterized them with UV-Vis spectrophotometry, photon cross-correlation spectroscopy, energy-dispersive X-ray fluorescence spectrometry, and Fourier transform infrared spectroscopy. The antibacterial and antibiotic-resistance reversal properties of optimized extract (O-ECB) and AgNPs were assessed on various microorganisms (15 Gram−, 7 Gram+, and 2 fungi) using the well diffusion method and microbroth dilution assay. The mechanism of action was investigated on growth kinetic and proton pumps of Escherichia coli. The in vivo antimicrobial activity and toxicity were assessed on Galleria mellonella larvae. The optimal mass yield (14.3%) related to the highest antibacterial activity (31 mm vs. S. aureus ATCC 6538) was obtained with the following operating conditions: % EtOH—100%; ratio m/v—20 g/mL; and extraction time—6 h. All the compounds identified in O-ECB were alkaloids and the major constituents were palmatine (51.63%), columbamine +7,8-dihydro-8-hydroxypalmatine (19.21%), jatrorrhizine (11.02%), and pseudocolumbamine (6.33%). Among the minerals found in O-ECB (S, Si, Cl, K, Ca, Mn, Fe, Zn, and Br), Br, Fe, and Cl were the most abundant with mean fluorescence intensities of 4.6529, 3.485,4, and 2.5942 cps/uA, respectively. The synthesized AgNPs revealed a strong absorption plasmon band between 430 and 450 nm and an average hydrodynamic diameter ×50 of 59.74 nm, and the presence of Ag was confirmed by a characteristic peak in the spectrum at the silver Kα line of 22.105 keV. Both O-ECB and AgNPs displayed noteworthy and broad-spectrum antimicrobial activities against 20/24 and 24/24 studied microorganisms, respectively, with recorded minimal inhibitory concentrations (MICs) ranging from 8 to ≥ 1024 µg/mL and 2 to 64 µg/mL. O-ECB and AgNPs showed antibiofilm properties and significantly enhanced the efficacy of conventional antibiotics against selected multidrug-resistant bacteria, and the mechanistic investigations revealed their interference with bacterial growth kinetic and the inhibition of H+-ATPase proton pumps. LD50s were 40 mg/mL and 0.6 mg/mL for O-ECB and AgNPs, respectively. In conclusion, the current study provides a strong experimental baseline to consider Enantia chlorantha bark and their green synthetized AgNPs as potent antimicrobial compounds in this era of antimicrobial resistance.
Cosmic dust samples from the surface of the illuminator of the International Space Station (ISS) were collected by a crew member during his spacewalk. The sampler with tampon in a vacuum container was delivered to the Earth. Washouts from the tampon's material and the tampon itself were analyzed for the presence of bacterial DNA by the method of nested PCR with primers specific to DNA of the genus Mycobacteria, DNA of the strains of capsular bacteria Bacillus, and DNA encoding 16S ribosomal RNA. The results of amplification followed by sequencing and phylogenetic analysis indicated the presence of the bacteria of the genus Mycobacteria and the extreme bacterium of the genus Delftia in the samples of cosmic dust. It was shown that the DNA sequence of one of the bacteria of the genus Mycobacteria was genetically similar to that previously observed in superficial micro layer at the Barents and Kara seas' coastal zones. The presence of the wild land and marine bacteria DNA on the ISS suggests their possible transfer from the stratosphere into the ionosphere with the ascending branch of the global electric circuit. Alternatively, the wild land and marine bacteria as well as the ISS bacteria may all have an ultimate space origin.
Objective: Study the influence of the mechanical preparation methods (grinding, fluidization) of solid pharmaceutical substances (PS) and herbal raw material on their physicochemical properties and biological activities. Methods: Test substances and solvents-Lactose monohydrate (DFE Pharma, Germany). Sodium chloride, bendazol hydrochloride (all Sigma-Aldrich, USA) and herbal raw material (Callisia fragrans). The dispersity and native structure of pharmaceutical substances were analyzed by several methods: optical microscopy–Altami BIO 2 microscope (Russia); low angle laser light scattering (LALLS) method (Malvern Instruments, UK); Spirotox method–Quasichemical kinetic of cell transition of cellular biosensor Spirostomum ambiguum; Fourier-transform infrared spectroscopy–the analysis in the middle IR region was carried out using an IR Cary 630 Fourier spectrometer (Agilent Technologies, USA). The analysis of dried leaves of C. fragrans before and after mechanical activation was performed using Shimadzu EDX-7000 X-ray fluorescence spectrophotometer without mineralization (Shimadzu, Japan). Results: It was established that the mechanical change, such as dispersion and drying, alters the biological activity of PS and herbal raw materials. The observed increase in the influence of the dispersed substance on the biosensor S. ambiguum is quantitatively estimated from the values of the activation energy (obsEa), which turns to be valued 1,5 (P≤0,05) times more than for the native form substance. In the study of the dependence of the availability of chemical elements K, Ca, Zn on the degree of dispersion of herbal raw materials was established a quantitative 4-fold (P≤0,05) increase in the concentration of elements in mechano-activated raw materials. Conclusion: By the example of the biological model of Spirotox (single-celled biosensor S. ambiguum) and herbal raw materials obtained from C. fragrans, the increase of biological activity of PS at the dispersion of initial preparations was proved.
This study demonstrates the link between the modification of the solid-phase pharmaceutical substances mechanical structure and their activity in waters with different molar ratio «deuterium-protium». Mechanochemical transformation of the powders of lactose monohydrate and sodium chloride as models of nutrients and components of dosage forms was investigated by the complex of physicochemical and biological methods. The solubility and kinetic activity of substances dispersed in various ways showed a positive correlation with the solvent isotope profile. Substances dissolved in heavy water were more active than solutes in natural water. Differential IR spectroscopy confirmed the modification of substituents in the sample of lactose monohydrate, demonstrating physicochemical changes during mechanical intervention. The biological activity of the compounds was determined by the method of Spirotox. The activation energy was determined by Arrhenius. Compared with the native compound, dispersed lactose monohydrate showed lower activation energy and, therefore, greater efficiency. In conclusion, proposed data confirm the statement that mechanical changes in compounds can lead to physicochemical changes that affect chemical and biological profiles.
It has recently been shown that the titer of the SARS-CoV-2 virus decreases in a cell culture when the cell suspension is irradiated with electromagnetic waves at a frequency of 95 GHz. We assumed that a frequency range in the gigahertz and sub-terahertz ranges was one of the key aspects in the “tuning” of flickering dipoles in the dispersion interaction process of the surfaces of supramolecular structures. To verify this assumption, the intrinsic thermal radio emission in the gigahertz range of the following nanoparticles was studied: virus-like particles (VLP) of SARS-CoV-2 and rotavirus A, monoclonal antibodies to various RBD epitopes of SARS-CoV-2, interferon-α, antibodies to interferon-γ, humic–fulvic acids, and silver proteinate. At 37 °C or when activated by light with λ = 412 nm, these particles all demonstrated an increased (by two orders of magnitude compared to the background) level of electromagnetic radiation in the microwave range. The thermal radio emission flux density specifically depended on the type of nanoparticles, their concentration, and the method of their activation. The thermal radio emission flux density was capable of reaching 20 μW/(m2 sr). The thermal radio emission significantly exceeded the background only for nanoparticles with a complex surface shape (nonconvex polyhedra), while the thermal radio emission from spherical nanoparticles (latex spheres, serum albumin, and micelles) did not differ from the background. The spectral range of the emission apparently exceeded the frequencies of the Ka band (above 30 GHz). It was assumed that the complex shape of the nanoparticles contributed to the formation of temporary dipoles which, at a distance of up to 100 nm and due to the formation of an ultrahigh strength field, led to the formation of plasma-like surface regions that acted as emitters in the millimeter range. Such a mechanism makes it possible to explain many phenomena of the biological activity of nanoparticles, including the antibacterial properties of surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.