This paper reports an analysis using molecular dynamics simulations of the effect of urea on the structure of water. Two definitions of the tetrahedral distributions are used to quantify this effect. The first one is sensitive to the mutual orientation between a reference water molecule and the water molecules forming the tetrahedron, and the second is sensitive to their radial distribution. The analysis shows that increasing urea mole fraction results in a reduction of the structured tetrahedral arrangement contribution in favor of an unstructured one. In order to understand this behavior, we used the nearest neighbor approach which allows us to get unambiguous information on the radial and orientation distributions of the water molecules around a probe one. The results indicate that the decrease of the tetrahedral arrangement of the nearest neighbors around a probe water molecule is associated with both the increase of the fluctuation in their radial distances as well as with the loss of their mutual orientations with respect to those observed in pure water. The tetrahedral distribution of water in the hydration shell of urea as well as that around its carbonyl and amine groups is also discussed.
We present a statistical model of a dilute polymer solution in good solvent in the presence of low-molecular weight cosolvent. We investigate the conformational changes of the polymer induced by a change of the cosolvent concentration and the type of interaction between the cosolvent and the polymer. We describe the polymer in solution by the Edwards model, where the partition function of the polymer chain with a fixed radius of gyration is described in the framework of the mean-field approximation. The contributions of polymer-cosolvent and the cosolvent-cosolvent interactions in the total Helmholtz free energy are treated also within the mean-field approximation. For convenience we separate the system volume on two parts: the volume occupied by the polymer chain expressed through its gyration volume and the bulk solution. Considering the equilibrium between the two subvolumes we obtain the total Helmholtz free energy of the solution as a function of radius of gyration and the cosolvent concentration within gyration volume. After minimization of the total Helmholtz free energy with respect to its arguments we obtain a system of coupled equations with respect to the radius of gyration of the polymer chain and the co-
The change of the Helmholtz free energy, internal energy, and entropy accompanying the mixing of acetone and methanol is calculated in the entire composition range by the method of thermodynamic integration using three different potential model combinations of the two compounds. In the first system, both molecules are described by the OPLS, and in the second system, both molecules are described by the original TraPPE force field, whereas in the third system a modified version of the TraPPE potential is used for acetone in combination with the original TraPPE model of methanol. The results reveal that, in contrast with the acetone-water system, all of these three model combinations are able to reproduce the full miscibility of acetone and methanol, although the thermodynamic driving force of this mixing is very small. It is also seen, in accordance with the finding of former structural analyses, that the mixing of the two components is driven by the entropy term corresponding to the ideal mixing, which is large enough to overcompensate the effect of the energy increase and entropy loss due to the interaction of the unlike components in the mixtures. Among the three model combinations, the use of the original TraPPE model of methanol and modified TraPPE model of acetone turns out to be clearly the best in this respect, as it is able to reproduce the experimental free energy, internal energy, and entropy of mixing values within 0.15 kJ/mol, 0.2 kJ/mol, and 1 J/(mol K), respectively, in the entire composition range. The success of this model combination originates from the fact that the use of the modified TraPPE model of acetone instead of the original one in these mixtures improves the reproduction of the entropy of mixing, while it retains the ability of the original model of excellently reproducing the internal energy of mixing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.