Water-soluble salts of anionic [Re Q (CN) ] (Q=S, Se, Te) chalcogenide octahedral rhenium clusters react with γ-cyclodextrin (γ-CD) producing a new type of inclusion compounds. Crystal structures determined through single-crystal X-ray diffraction analysis revealed supramolecular host-guest assemblies resulting from close encapsulations of the octahedral cluster within two γ-CDs. Interestingly, nature of the inner Q ligands influences strongly the host-guest conformation. The cluster [Re S (CN) ] interacts preferentially with the primary faces of the γ-CD while the bulkier clusters [Re Se (CN) ] and [Re Te (CN) ] exhibit specific interactions with the secondary faces of the cyclic host. Furthermore, analysis of the crystal packing reveals additional supramolecular interactions that lead to 2D infinite arrangements with [Re S (CN) ] or to 1D "bamboo-like" columns with [Re Se (CN) ] and [Re Te (CN) ] species. Solution studies, using multinuclear NMR methods, ESI-MS and Isothermal titration calorimetry (ITC) corroborates nicely the solid-state investigations showing that supramolecular pre-organization is retained in aqueous solution even in diluted conditions. Furthermore, ITC analysis showed that host-guest stability increases significantly ongoing from S to Te. At last, we report herein that deep inclusion alters significantly the intrinsic physical-chemical properties of the octahedral clusters, allowing redox tuning and near IR luminescence enhancement.
New luminescent poly(methylmethacrylate) (PMMA) nanocomposites with high content of different hexanuclear octahedral cluster building blocks, namely [Mo6I8(C2F5COO6)](2-), [Re6Se8(CN)6](4-) and [W6Cl14](2-) have been prepared by free-radical polymerisation. To do so, cluster complexes bearing a polymerisable ammonium counter-cation have been synthesised. In this way, we demonstrate that ionic assembling is a powerful tool to functionalise easily any type of anionic cluster units to be introduced in a PMMA organic matrix. All samples remain homogeneous, stable during several months, and retain the luminescence properties of the cluster precursor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.